
Master Thesis  
Software Engineering 
Thesis no: MSE-2006:14 
June 2006 

School of Engineering 
Blekinge Institute of Technology 
Box 520 
SE – 372 25 Ronneby 
Sweden 

The role of quality requirements  
in software architecture design 

Karol Kazimierz Wnukiewicz 



  

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in 
partial fulfilment of the requirements for the degree of Master of Science in Software 
Engineering. The thesis is equivalent to 20 weeks of full time studies. 

Contact Information: 
Author: 
Karol Kazimierz Wnukiewicz 
E-mail: kkwn05@student.bth.se  
Web: http://www.student.bth.se/~kkwn05  
 

External advisor: 
Zbigniew Huzar 
Wroclaw University of Technology 
Wybrzeze Wyspianskiego 27 
50-370 Wroclaw, Poland 
E-mail: Zbigniew.Huzar@pwr.wroc.pl  
 

University advisor: 
Mikael Svahnberg 
Department of Systems and Software Engineering 
E-mail: Mikael.Svahnberg@bth.se  
 

School of Engineering 
Blekinge Institute of Technology 
Box 520 
SE – 372 25 Ronneby 
Sweden 

Internet : 
www.bth.se/tek 
Phone : +46 457 38 50 00 
Fax : + 46 457 271 25 



 
 
 
 
 
 
 
 
 
  

He nodded, he shrugged. He shrugged again.  
"A what?" he said. 

"An S.E.P"  
"An S… ?"  

"…E.P." 
"And what's that?" 

 
 Douglas Adams, Life, the Universe, and Everything 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

ii  

 
 
 
 
 

Abstract 
 
 

An important issue during architectural design is that besides functional requirements, 
software architecture is influenced greatly by quality requirements [9][2][7], which often are 
neglected. The earlier quality requirements are considered, the less effort is needed later in the 
software lifecycle to ensure a sufficient software quality levels. Errors due to lack of their 
fulfilment are the most expensive and difficult to correct. Therefore, attention to quality 
requirements is crucial during an architectural design. The problem is not only to gather the 
system’s quality requirements, but to establish a methodology that helps to deal with them 
during the software development. Literature has paid some attention to software architecture 
in the context of quality requirements, but there is still lack of effective solutions in this area. 

To alleviate the problem, this paper lays out important concepts and notions of quality 
requirements in a way they can be used to drive design decisions and evaluate the architecture 
to estimate whether these requirements are fulfilled. Important concepts of software 
architecture area are presented to indicate how important quality requirements are during the 
design and what are the consequences of their lack in a software system. Moreover, a quality 
requirement-oriented design method is proposed as an outcome of the literature survey. This 
method is a model taking quality requirements into account at first, before the core 
functionality is placed.  

Besides the conceptual solution to the identified problems, this paper also suggests a 
practical method of handling quality requirements during a design. A recommendation 
framework for choosing the most suitable architectural pattern from a set of quality attributes 
is also proposed. Since the literature provides insufficient qualitative information about 
quality requirement issues in terms of software architectures, an empirical research is 
conducted as  means for gathering the required data. Therefore, a systematic approach to 
support and analyze architectural designs in terms of quality requirements is prepared. 
Finally, quality requirement-oriented and pattern-based design method is further proposed as 
a result of investigating patterns as a tool for addressing quality requirements at different 
abstraction levels of a design. The research is concerned with the analysis of software 
architectures against one or more desired software qualities that ought to be achieved at the 
architectural level.  
 
Keywords: Non-functional requirements, patterns, quality attributes, quality models, 
architectural design, architecture evaluation. 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

iii  

 
 
 
 
 

Streszczenie 
 
 

Proces projektowania architektury systemu informatycznego jest determinowany nie 
tylko przez wymagania funkcjonalne, lecz również przez wymagania niefunkcjonalne 
[9][2][7] formułowane podczas analizy wymagań. Specyfikacja wymagań często pomija w 
opisie te wymagania, kładąc całkowity nacisk na funkcjonalność.  
Projektanci winni jednak dążyć do uzyskania systemu informatycznego, którego struktura 
odzwierciedlałaby oba typy wymagań w danej dziedzinie problemu. Im wcześniej brane są 
pod uwagę wymagania niefunkcjonalne, tym wyższy poziom końcowej jakości 
oprogramowania zostanie uzyskany. Wysiłki związane z uzyskaniem nieosiągniętej jakości 
systemu są bardzo kosztowne, a efekty trudne do osiągnięcia. Stąd uwaga nad wymaganiami 
niefunkcjonalnymi jest konieczna podczas projektowania architektury. Problem nie polega 
tylko na właściwej specyfikacji tych wymagań, ale również na ustanowieniu metodyki, która 
pozwoli na ich realizację. Literatura poświęca trochę uwagi projektowaniu systemów w 
kontekście wymagań niefunkcjonalnych, jednakże wciąż brak jest efektywnych rozwiązań w 
tej dziedzinie.  
 Praca przedstawia rolę i charakter wymagań niefunkcjonalnych w kontekście 
czynników mających wpływ na decyzje procesu projektowania architektury i jej późniejszą 
ocenę wyznaczającą poziom spełnienia tych wymagań. Ponadto, zagadnienia związane z 
architekturą systemu informatycznego zostaną przedstawione by określić istotę wymagań 
niefunkcjonalnych oraz konsekwencje, jakie wiążą się z ich brakiem. Praca proponuje model 
projektowy (ang. quality requirement-oriented design method) jako rezultat przeglądu sztuki, 
w którym wymagania niefunkcjonalne brane są pod uwagę w pierwszej kolejności, tj. przed 
wymaganiami funkcjonalnymi.  

Następnie, aby zilustrować to podejście, praca przedstawia praktyczną realizację 
omawianego problemu. Ze względu na brak informacji w literaturze, które mogłyby posłużyć 
w tym nowatorskim podejściu, dane zostały skompletowane na podstawie empirycznych 
badań. Dzięki tym pomiarom powstał tzw. Recommendation Framework, czyli narzędzie 
wspomagające proces projektowania architektury, które na podstawie pożądanych 
charakterystyk jakości w oparciu o zbiór wymagań niefunkcjonalnych dokonuje wyboru 
architektury sytemu zdefiniowanej ze zbioru wzorców projektowych. W kolejnej części praca 
opisuje model procesu projektowania, który podobnie jak poprzedni jest zorientowany na 
wymagania niefunkcjonalnie. Jednakże ta propozycja (ang. quality requirement-oriented and 
pattern-based design method) wykorzystuje wzorce projektowane zróżnicowane pod 
względem poziomu abstrakcji systemu, na jakim mogą zostać wykorzystane. Badania 
prowadzone w tej pracy mają na celu analizę procesu projektowania systemów 
informatycznych ukierunkowanego na spełnienie jednego lub kilku charakterystyk jakości.  
 
Słowa kluczowe: Wymagania niefunkcjonalne, architektura sytemu informatycznego, 
projektowanie, wzorce projektowe, modele jakościowe, charakterystyki jakości, jakość 
oprogramowania.  
 
 
 



 The role of quality requirements in software architecture design  
 

  

iv 

 
 
 
 
 

Acknowledgements 
 
 

First and foremost, I would like express my sincere gratitude and appreciation to my 
advisors Zbigniew Huzar and Mikael Svahnberg for their knowledge and patience. Without 
their assistance this research could not have been completed. 

I am also grateful to my parents, Kazimierz and Ewa for their support and love, my 
sisters Alicja and Malgorzata, my god-son Jakub and his father – my brother-in-law Jacek.  

In addition, special thanks are addressed to the interviewed people who spent their 
precious time on answering the questionnaire, for their interest and effort during the 
evaluation. 
 
My thanks to them all. 
 
Karol Kazimierz Wnukiewicz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

v 

 
 
 
 
 

Table of contents 
 
 
 
Chapter One – Introduction............................................................................... 1 
 

1.1 Background of the study.................................................................................................. 1 
1.2 Aims and objectives.......................................................................................................... 1 
1.3 Value of the study............................................................................................................. 2 
1.4 Research scope and limitations ....................................................................................... 2 
1.5 Structure of this study...................................................................................................... 3 
 

Chapter Two – Software Architecture.............................................................. 4 
 

2.1 Introduction ...................................................................................................................... 4 
2.2 Definition........................................................................................................................... 4 
2.3 Common elements ............................................................................................................ 5 
2.4 Architecture Description Languages.............................................................................. 6 
2.5 Views.................................................................................................................................. 6 

2.5.1 Introduction............................................................................................................... 6 
2.5.2 RM-ODP.................................................................................................................... 7 
2.5.3 The “4+1” view model.............................................................................................. 8 
2.5.4 Hofmeister et al. design method................................................................................ 8 
2.5.5 Summary and remarks............................................................................................... 9 

2.6 Software requirements..................................................................................................... 9 
2.7 Styles and patterns in Software Architecture.............................................................. 10 
2.8 Summary and remarks .................................................................................................. 10 
 

Chapter Three – Quality Requirements ......................................................... 12 
 

3.1 Software quality.............................................................................................................. 12 
3.2 Quality Requirements .................................................................................................... 13 

3.2.1 Introduction............................................................................................................. 13 
3.2.2 Definition and concept ............................................................................................ 13 
3.2.3 Quality Attributes .................................................................................................... 13 
3.2.4 Quality Attribute impact.......................................................................................... 14 
3.2.5 Quality requirements categories ............................................................................. 15 
3.2.6 Prioritization ........................................................................................................... 16 
3.2.7 Trade-offs ................................................................................................................ 16 
3.2.8 Quality Requirements in practise............................................................................ 17 
3.2.9 Summary and remarks............................................................................................. 18 

3.3 Quality Models................................................................................................................ 19 
3.3.1 Introduction............................................................................................................. 19 
3.3.2 McCall’s Quality Model.......................................................................................... 19 
3.3.3 Boehm’s Quality Model........................................................................................... 20 



 The role of quality requirements in software architecture design  
 

  

vi 

3.3.4 FURPS/FURPS+..................................................................................................... 20 
3.3.5 ISO/IEC 9126 Quality Model .................................................................................. 21 
3.3.6 ISO/IEC 9126 metrics ............................................................................................. 24 
3.3.7 Summary and remarks............................................................................................. 25 
 

Chapter Four – Architectural Design and Evaluation .................................. 27 
 

4.1 Introduction .................................................................................................................... 27 
4.2 Patterns ........................................................................................................................... 29 

4.2.1 Definitions and categories ...................................................................................... 29 
4.2.2 Why Patterns? ......................................................................................................... 30 
4.2.3 Why Architectural Patterns?................................................................................... 31 
4.2.4 Architectural Patterns ............................................................................................. 31 
4.2.5 Architectural Pattern categories............................................................................. 32 
4.2.6 Summary and remarks............................................................................................. 32 

4.3 Software Architecture Evaluation ................................................................................ 34 
4.3.1. Evaluation theory ................................................................................................... 34 
4.3.2 Aims of assessment .................................................................................................. 34 
4.3.3 Techniques for Architectural Assessment ............................................................... 35 
4.3.4 Summary and remarks............................................................................................. 39 

4.4 Quality requirement-oriented design method ............................................................. 40 
4.4.1 Introduction............................................................................................................. 40 
4.4.2 Bosch design method in context .............................................................................. 40 
4.4.3 Method activities ..................................................................................................... 41 
4.4.4 Method example ...................................................................................................... 42 
4.4.5 Benefits and liabilities............................................................................................. 43 
4.4.6 Summary and remarks............................................................................................. 44 
 

Chapter Five – Empirical approach................................................................ 46 
to Recommendation Framework preparation................................................ 46 
 

5.1 Study design .................................................................................................................... 46 
5.1.1 Empirical research.................................................................................................. 46 
5.1.2 Aims and objectives................................................................................................. 47 
5.1.3 Questionnaire design............................................................................................... 47 
5.1.4 Summary and remarks............................................................................................. 48 

5.2 Analysis and results........................................................................................................ 49 
5.2.1 Introduction............................................................................................................. 49 
5.2.2 Research domain ..................................................................................................... 49 
5.2.3 Questionnaire results .............................................................................................. 50 
5.2.4 Data analysis........................................................................................................... 50 
5.2.5 Validity and threats ................................................................................................. 52 

5.3 Conclusions and findings............................................................................................... 53 
 

Chapter Six – Recommendation Framework................................................. 55 
 

6.1 Introduction .................................................................................................................... 55 
6.2 Background philosophy ................................................................................................. 55 
6.3 Support for design activity ............................................................................................ 56 
6.4 Requirements variability and management................................................................. 57 



 The role of quality requirements in software architecture design  
 

  

vii  

6.5 Method activities ............................................................................................................ 58 
6.6 Benefits and liabilities .................................................................................................... 62 
6.7 Quality requirement-oriented and pattern-based design method ............................. 63 

6.7.1 Introduction............................................................................................................. 63 
6.7.2 Top-down vs. bottom-up design approach .............................................................. 64 
6.7.3 Method activities ..................................................................................................... 65 
6.7.4 Method summary and conclusions .......................................................................... 66 

6.8 Summary and remarks .................................................................................................. 67 
 

Chapter Seven – Usage examples and validity ............................................... 68 
 

7.1 Introduction .................................................................................................................... 68 
7.2 Interpretations................................................................................................................ 68 
7.3 Usage example ................................................................................................................ 69 
7.4 Qualitative study ............................................................................................................ 72 
7.5 Comparative discussion ................................................................................................. 78 
7.6 Summary conclusions .................................................................................................... 81 
 

Chapter Eight – Summary and concluding remarks..................................... 82 
 

8.1 Research summary......................................................................................................... 82 
8.2 Proposed solutions.......................................................................................................... 83 
8.3 Conclusions ..................................................................................................................... 84 
8.4 Concluding remarks....................................................................................................... 85 
8.5 Future work .................................................................................................................... 87 
 

References .......................................................................................................... 89 
 
Appendix 1 ......................................................................................................... 92 
 
Appendix 2 – Questionnaire............................................................................. 93 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

viii  

 
 
 
 
 

Figures and tables 
 
 

Figures: 
 

Figure 1 - The gap between software architecture and quality requirements............................2 
Figure 2 - Software elements at different abstraction levels .....................................................6 
Figure 3 - The “4+1” view model .............................................................................................8 
Figure 4 - Quality attribute impact and relationships [27] ......................................................15 
Figure 5 - An example trade-off analysis method................................................................... 17 
Figure 6 - McCall software quality model divided in three types of quality characteristics .. 20 
Figure 7 - ISO/IEC 9126 six main software quality characteristics........................................ 21 
Figure 8 - ISO/IEC 9126 quality model for external and internal quality .............................. 22 
Figure 9 - Buschmann et al. [9] pattern categories and subcategories .................................... 32 
Figure 10 - Architecture transformation categories ................................................................ 38 
Figure 11 - Quality Attribute-oriented Software ARchitecture design method ...................... 41 
Figure 12 - Quality requirement-oriented design method ....................................................... 42 
Figure 13 - An illustration of the Recommendation Framework usage .................................. 55 
Figure 14 - An example of AHP quality attribute comparison ............................................... 60 
Figure 15 - An illustration of pattern categories at different abstraction levels...................... 64 
Figure 16 - Quality requirement-oriented and pattern-based design method.......................... 66 
 
 

Tables: 
 
Table 1 - Quality attribute glossary (descriptions) .................................................................. 24 
Table 2 - List of ISO/IEC 9126 standards ............................................................................... 24 
Table 3 - Example metrics....................................................................................................... 25 
Table 4 - Participation in software architecture designs..........................................................51 
Table 5 - Average knowledge of quality requirements and patterns....................................... 51 
Table 6 - Subjects familiarity with architectural patters.......................................................... 52 
Table 7 - Empirical research data for the Recommendation Framework................................ 54 
Table 8 - AHP comparisons per number of quality attributes................................................. 60 
Table 9 - Quality attributes with their weights of importance................................................. 61 
Table 10 - RF results for usability, maintainability, and portability ....................................... 71 
Table 11 - RF results for efficiency and maintainability......................................................... 72 
Table 12 - Quality attribute strengths and weaknesses of layers............................................. 73 
Table 13 - Quality attribute strengths and weaknesses of pipes and filters............................. 74 
Table 14 - Quality attribute strengths and weaknesses of blackboard .................................... 74 
Table 15 - Quality attributes from different viewpoints.......................................................... 75 
Table 16 - Quality attribute strengths and weaknesses of broker............................................ 76 
Table 17 - Quality attribute strengths and weaknesses of MVC ............................................. 76 
Table 18 - Quality attribute strengths and weaknesses of PAC .............................................. 77 
Table 19 - Quality attribute strengths and weaknesses of Microkernel .................................. 77 
Table 20 - Quality attribute strengths and weaknesses of Reflection...................................... 77 



 The role of quality requirements in software architecture design  
 

  

ix 

Table 21 - Summarised comparison values............................................................................. 79 
Table 22 – Quantitative research results comparison on FAS................................................. 80 
Table 23 – Quantitative research results comparison on FQA................................................ 80 
Table 24 - Framework for Architecture Structures (FAS) [31]............................................... 92 
Table 25 - Framework for Quality Attributes (FQA) [31] ...................................................... 92 



 The role of quality requirements in software architecture design  
 

  

1 

 
 
 

Chapter One – Introduction 
 
 

1.1 Background of the study 
 

The importance of architectural design is widely recognized in software engineering. 
It is commonly known that an architecture is designed to ensure system functionality, i.e. 
meet the system functional requirements. A requirement specification is an outcome of 
requirements engineering activities and besides the mentioned functional requirements, it 
contains requirements that are not concerned with the functionality. Different from functional 
requirements that describe ‘what’ the system will do, quality requirements (also called non-
functional requirements or system properties) describe ‘how’ it will do it. They are in many 
cases either unclearly stated or even neglected during the requirements specification. This 
leaves quality attributes impossible to identify, measure, and in consequence – address in 
software architecture. Hence, to predict explicitly quality attributes of a system, quality 
requirements need to be specified in sufficient detail. 

Software architecture design is often based on architects intuition and previous 
experience. Little methodological support is available, but there are still no effective 
solutions to guide the architectural design. Perhaps the most difficult activity is the 
transformation from requirement specification into software architecture. One key task that 
remains especially non-trivial is how to handle quality requirements. 

The challenge of an architectural design is to develop a software architecture with the 
desired quality levels. Quality requirements set the boundary for the final quality of a 
designed system. The problem is to get an early indication of the quality attributes in the 
resulting architecture. Software architecture is concerned with structures of high-level 
components and relationships among them. Certain combinations of components are 
recognized to address some quality attributes. In consequence, quality requirements can be 
addressed by the architectural design and furthermore – influence the software quality. 
 

1.2 Aims and objectives 
 

The main aim is to investigate the concept of quality requirements in software 
architecture design. Figure 1 is a general illustration of the problem. This thesis aims to 
discuss the quality requirements’ impact on software architecture and the design activity. It 
also involves how to ensure and verify the fulfilment of these requirements. The overall 
research aim of this thesis is to identify, analyze, and propose a method for addressing quality 
requirements during software architecture design.  
 
Objectives:  
 

• Specify software architecture in the context of quality requirements. 
• Identify and classify quality requirements which influence the selection of software 

architecture. 
• Discuss the specification of quality attributes and their relationship with quality 

requirements. 



 The role of quality requirements in software architecture design  
 

  

2 

• Study software architecture design as a method of achieving quality requirements. 
• Analyze the relationship between quality requirements and types of software 

architecture structures. 
• Provide recommendations for software architecture design in terms of quality 

requirements achievement.  
• Investigate existing solutions. 
• Verify proposed solutions. 

 

 
 

Figure 1 - The gap between software architecture and quality requirements 
 
This thesis is divided into two main parts: the first one presents a state-of-the-art discussing 
the concepts from the literature and presenting answers to several objectives stated above. 
The second part is a practical research solution. It consists of three proposed methods which 
handle quality requirements in software architecture design. 
 

1.3 Value of the study 
 

Software architects need to understand the meaning of quality attributes and quality 
requirements that constrain these attributes, based on which software architecture is 
developed. The interest of software architecture design in terms of quality requirements 
increases. More attention should be paid to explore their context, so that guidance is provided 
how to design from quality requirements to software architecture that addresses these 
requirements. That is why an methodological support for moving from quality attributes 
towards software architecture is required, whereas little existing research was found in this 
area. Possibly, if such mature, verified solutions existed, quality requirements would receive 
more attention during a system development. This paper is only an attempt of providing such 
solutions and further analysis and verification of this thesis results are required in order to use 
the proposed method commonly.  
 

1.4 Research scope and limitations 
 

The domain of this thesis is based on the quality requirements that are able to be 
fulfilled at the highest abstraction level, i.e. during the software architecture design. The 
requirements engineering phase is omitted; it is assumed that the quality requirements are 
specified and prepared, so that an architect is ready to take them into account in design 
activities. 

This paper concentrates on all of the eight architectural patterns categorized and 
described by Buschmann et al. [9]. The ISO/IEC 9126 quality model [20] is used for the 
quality attributes description. Several quality attributes have passive influence on software 
architecture at the design level as they are only observable during the system execution 
(operational quality requirements [7]). These are excluded as they are neither benefit nor 
liability at the architectural design level.  

The author thinks there are four major limitations in this research. Firstly, quality 
requirements are often vague, neglected or weakly specified. Secondly, the lack of 
information about the quality attribute influence on architectural patterns and various types of 
software architecture structures in general. Small number of literature sources is available are 



 The role of quality requirements in software architecture design  
 

  

3 

used to collect data about quality attributes impact. These are: Buschmann et al. [9], Bosch 
[7], and Svahnberg and Wohlin [29][31]. Thirdly, neither Buschmann et al. [9] nor Bosch [7] 
use the ISO/IEC 9126 quality model [20] for specifying quality attributes. Finally, the lack of 
design methods that guide software architecture design for quality. This however lacks in 
similar quantitative recommendation frameworks in the field of software architecture design. 
Only one, similar research was found that investigated this area by Svahnberg and Wohlin 
[31] and the research in this thesis is based on this paper. 
 

1.5 Structure of this study 
 

This paper is organized as follows. It is important to settle on definitions and terms 
used in this paper. Much confusion can be avoided by agreeing on a set of terminology and 
establishing a glossary will help to avoid misunderstandings caused by the wide variety of 
definitions in this software engineering field. Hence, little background information and is 
required. Chapter Two defines software architecture, its descriptions and related issues. 
Chapter Three presents the notion of software quality to magnify the concept of quality 
requirements and quality attributes. Several quality models are described as a method for 
quality attribute specification. Chapter Four defines the software architecture design in 
terms of quality requirements and in general. This part also presents the definition of patterns, 
their categorization and influence on quality attributes. Software architecture evaluation is 
also presented in this part as a part of the design process that ensures and verifies whether a 
software architecture has fulfilled its requirements. Chapter Five illustrates the empirical 
study construction and its results required for further analysis. Chapter Six uses the 
questionnaire outcomes to define a recommendation framework, i.e. a design support for 
choosing an architectural pattern that suits best the given quality requirements. Afterwards, 
the validity of the framework is verified in Chapter Seven. Finally, the entire research is 
summarized in Chapter Eight and some significant conclusions and recommendations are 
given.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

4 

 
 
 

Chapter Two – Software Architecture 
 
 

2.1 Introduction 
 

The result from the software architecture design activity is a software architecture, 
which has become important field of study in recent years. This increased focus is a result of 
software architecture benefits including system understanding, documentation, 
communication tool, architectural drifts, and components reusability. 

Software architecture deals with the design and implementation of the structure of the 
system at high abstraction level. It results in a composition of a number of architectural 
elements called components in a certain way (as means) to satisfy the software functionality 
and quality requirements.  

More attention is paid to exploring its context, but there is still no single, standard or 
commonly accepted definition of the term. Many authors and researchers have provided its 
own, but it is hard to find a one-good, suitable definition. There is also a difference between 
the terms architecture and design which are often used as synonyms. Architectural patterns 
are similarly considered as architectural styles; quality requirements are referred as non-
functional requirements, system properties, constrains and many others. The lack of a clear 
specification and hence misunderstandings among these terms causes much confusion in 
software engineering. Therefore, it is important to settle on definitions and terms used in this 
paper. Much confusion can be avoided by agreeing on a set of terminology and establishing a 
glossary will help to avoid misunderstandings caused by the wide variety of definitions. 
 

2.2 Definition  
 

A number of definitions of software architecture have been proposed so far. One of 
popular is introduced by Bass et al. in [2]. As it was used in many research documents, it will 
not be presented here. Most of found were concerned about the system structure, its parts and 
the relationships among them. Of course they vary in detail, but generally involves the 
system presented as a view of components and connectors. The process of dividing the 
system into these components and connectors is called software architecture design and 
software architecture is an artefact of this activity. Software architecture definitions leave 
open questions about levels of abstraction that should be provided by an architecture. The 
literature also emphasizes that software architecture is seen as a method to address the 
system’s complexity. 

Another, less popular definition that seemed to be rather exhaustive and especially 
useful to the purpose of this thesis will be brought: 
 
 “A software architecture is a description of the subsystems and 

components of a software system and the relationships between 
them. Subsystems and components are typically specified in different 
views to show the relevant functional and non-functional properties 
of a software system. The software architecture of a system is an 
artefact. It is the result of the software design activity.” [9, p. 384] 

 



 The role of quality requirements in software architecture design  
 

  

5 

In this paper, software architecture is concerned about the point of designing towards quality 
requirements. This definition by Buschmann et al. reveals important aspects of the 
architecture as a structure and this structured form covers system requirements, including 
quality requirements. The software architecture allows for early evaluation of a design to 
verify whether quality requirements are covered. “Software architecture is closely coupled to 
how well a system achieves various quality attributes” [3, p. 5]. Therefore, architecture 
should be regarded as an important issue covering the quality aspects of software applications 
and much attention shall be placed on modelling and describing the software architecture as a 
design artefact. The following sections depict different approaches to architectural design. 
 

2.3 Common elements 
 

Software architecture is commonly defined in terms of components and connectors – 
represents their topology. The Unified Modelling Language (UML) in version 2.0 defines a 
component as follows: 

 
 “a modular part of a system that encapsulates its contents and 

whose manifestation is replaceable within its environment. A 
component defines its behaviour in terms of provided and required 
interfaces. As such, a component serves as a type, whose 
conformance is defined by these provided and required interfaces 
(encompassing both their static as well as dynamic semantics)” [33, 
p. 6]. 

 

 
Moreover, a connector is defined as “a link that enables communication between two or more 
instances. The link may be realized by something as simple as a pointer or by something as 
complex as a network connection” [33, p. 7]. 

There are many kinds of components, some of which have the same properties. 
Components, which encapsulate some coherent set of functionality, interact with each other 
using interfaces they provide in a defined way to fulfil their responsibility to other 
components. A component is independent from the context in which it is used to provide 
functionality. At the lower-level software architecture (e.g. programming language level) 
components may be abstract to elements such as modules, packages, classes, objects, or even 
a set of related functions or methods. Connectors realize the communication, cooperation, 
and interaction between components. Their main responsibility is to describe relationships 
between the components. The system achieves certain qualities based on the composition of 
its components and connectors, which form the architecture. However, as it was presented in 
previous section, the meaning of software architecture extends far beyond the definition of 
components and relationships between them. 

The term component is used as a high-level design element. Components differ from 
other ‘objects’ from the level of abstraction they concern [13]. Components are fundamental 
architectural building blocks, whereas ‘objects’ are runtime entities of a lower-level design. 
Unlike components, ‘objects’ have an identity; they are arranged into hierarchies according to 
their inheritance relationships. 
 
To summarize, software architecture definitions are in concern with: 

• major (high-level) components, 
• component behaviour, 
• decomposition into certain structures,  
• interactions between components through connectors. 



 The role of quality requirements in software architecture design  
 

  

6 

These principals set the fundamental system structure. Architecture definitions do not define 
however what a component is. It is presented though as a software element.  

 
 

 
 

Figure 2 - Software elements at different abstraction levels 
 
 

2.4 Architecture Description Languages 
 

Architectural Description Languages (ADLs) are formal, modelling languages for 
describing the software architecture. They are represented by a formal notation (semantics) 
and also using graphical representations that corresponds to the textual notation.  Natural 
language (written text) is also a modelling language. A number of ADLs have been 
introduced for modelling architectures to provide extensive means in modelling capabilities 
and tool support. The architecture description should provide input for the analysis of quality 
attributes. However, those methodologies are strong in representing functionality but tend to 
be weak in representing quality requirements. Architectural Description Languages that are 
concerned with object orientation can though represent, but not directly, some of the quality 
attributes such as maintainability, understandability, and reusability. An ADL presents 
architecture in one view only. Since the architecture is not a simple flat view of component 
and connectors, multiple views are used to understand the architecture comprehensively. 
Multiviewed approach to software architecture is required for managing the complexity of 
designing and developing software systems. Multiple views started becoming popular in 
software architecture with the development of modelling concepts and notations of the 
Unified Modelling Language (UML). 

 
2.5 Views 
  
2.5.1 Introduction 

 
Multiple views provide representations of the software architecture that can be used to 

guide its construction. A view provides a useful vehicle for communicating the architecture 
to different stakeholders. They provide a multiviewpoint framework for software 
architecture. They also manage complexity, i.e. multiple views enable decomposition of the 
designed architecture. The view models address a static structure of the architecture, dynamic 
aspect, physical layout, and also the development of the system. An architect is responsible is 
to decide which view should be used to describe the software architecture. The main purpose 



 The role of quality requirements in software architecture design  
 

  

7 

of using views from the point of this research is that different views exhibit different quality 
attributes important during software architecture design and evaluation. 

Bass et al. in [2] underline that software architecture defines the overall system’s 
structure1 since software systems exhibit many structures. The most common and useful 
structures (views) are: module, conceptual (logical), process (coordination) and physical 
software structures. Each of them helps to exhibit different quality attributes, and that is why 
it is important to mention about different types of software structures. Each structure is an 
abstraction of the system with respect to different criteria. Moreover, each structure may use 
different notation (description language), including its own signification of system 
components and relationships among them. Structure(s) included in software architecture are 
not visible to the system’s end user. 
 According to the definition of software architecture in terms of components, 
connectors and relationships between them, a view is a set of specified components and 
connectors that describe a software architecture. Each view has its own definition of these 
architectural elements. 
 

2.5.2 RM-ODP 
 

Another approach considering architectural issues is the Reference Model for Open 
Distributed Processing (RM-ODP) described in [19] by the International Standards 
Organization (ISO). RM-ODP is a formal standard that serves guidance how to describe 
distributed object-oriented software architectures. The model is quite general, and therefore it 
is used in various application domains. The model defines a practise for software 
architectures that investigate the properties of distributed software systems, i.e. provides a 
framework for the development of distributed processing. The RM-ODP introduces the 
concept of a viewpoint to reveal a certain set of system concerns. There are five essential 
viewpoints that serve a comprehensive model for a single software architecture. These 
viewpoint are: 
 

1. Enterprise viewpoint defines the system in terms of business requirements, system 
objectives, policies, and purpose. It is directed towards user needs. 

2. Information viewpoint deals with the information structure and objects. It is an 
activity when elements of the system are modelled.  

3. Computational viewpoint handles decomposition of the system into objects and their 
interfaces and behaviours. This viewpoint supports dynamic behaviours that are 
specified by the information viewpoint. It uses logical partitioning of the distributed 
systems independently of an environment. 

4. Engineering viewpoint defines the relationships between the distributed objects and 
presents methods of supporting behaviours between these objects.  

5. Technology viewpoint decompose the system into software and hardware 
components. It identifies possible technical structures.  

 
Each of these perspective is object oriented, and provides a model for the system from the 
given viewpoints. The first three viewpoints define software architecture making the 
distributed computing transparent. Usually, the Unified Modelling Language is used as 
formal notations for describing each of the software architecture viewpoints. The RM-ODP 
viewpoints provide a separation of architectural issues that divide the software architecture 
into functionality and the distributed computing aspects. 

                                                 
1 The term structure by Bass et al. [2] is used synonymously with view. 



 The role of quality requirements in software architecture design  
 

  

8 

 
2.5.3 The “4+1” view model 

 
The literature provides several view models that consist of a number of architectural 

views. Each view reveals different aspects of the software architecture. The “4+1” View 
Model described in [22] by Philippe Kruchten focuses on describing object-oriented systems. 
The model is composed of five main views (perspectives):  
 

1. Logical view addresses the functionality; it is a object model of the design. 
2. Process view depicts the concurrency and synchronization aspects of the design. 
3. Physical view presents how the software is combined onto the hardware and reflects 

its distributed aspects. 
4. Development view captures the static organization of the software in its execution 

environment. 
 
The fifth view (+1) provides scenarios or use cases that tie the other four views together and 
help to validate the design in the other views. Each view has its own particular notations and 
may use different patterns that guide their composition, and therefore allow multiple styles in 
one software system. 
 

 
 

Figure 3 - The “4+1” view model 
 

2.5.4 Hofmeister et al. design method 
 

Another important model to understand the architectural issues facing designers 
presented in [16] by Hofmeister et al. depicts four views that address different engineering 
concerns. Conceptual view pays attention to appropriate decomposition of the system without 
delving into details. However, it handles some global system properties such as performance, 
maintainability or dependability. It also makes architecture available to different stakeholders 
(end-users, developers, project managers, marketing, etc.). Module view maps and controls 
system’s functionality. It addresses how the solutions of conceptual architecture can be 
realized in today’s software platforms and technologies. Execution view is often used for 
distributed or concurrent systems. It maps the components (with the functionality included 
inside) onto the processes and platform elements of the physical system. Last, but not least, 
the code view. It describes the organisation of the architecture elements are mapped into the 
implementation. 



 The role of quality requirements in software architecture design  
 

  

9 

 
 

Figure 4 – Hofmeister et al. view model 
 
 

2.5.5 Summary and remarks 
 
 The Hofmeister et al. four view model is quite similar to Kruchten’s. The logical view 
resembles conceptual view, process view resembles execution view, etc. The important this is 
that views are used to express different aspects of the architecture using an appropriate way. 
Views that best fit the situation should be used. One way to select the view set is to use 
previous experience and look at similar architecture solutions that used views. An architect 
can also focus at the stakeholders needs, and complexity of the system. However, from the 
goal of this research, looking at system’s quality attributes can help to decide which views 
provide the information relevant to deal with them. Architectural patterns presented in [9] by 
Buschmann et al. as the software architecture descriptions represent the conceptual view by 
Hofmeister et al. [16] and logical view by Kruchten [22]. 
 

2.6 Software requirements  
 

Software requirements, defined during the early stages of a system development as a 
result of requirements specification, consist of functional and quality requirements. Both of 
these are important because they provide basis for all of the software architecture design 
activities. The requirement specification is used as an input for architectural design. Once the 
requirements are set, a software architect initiates the design and other technical work 
follows: development, testing, implementation. Software architecture design is about 
converting the requirements into software architecture that fulfils these requirements. The 
meaning of software architecture design is discussed in detail in Chapter Four. 

Functional requirements are defined by Sommerville in [28, p. 100] as “statements of 
services the system should provide, how the system should react to particular inputs and how 
the system should behave in particular situations”. Functional requirements describe what 
the system must do. They are also called behavioural or operational requirements because 
they specify the system’s possible inputs and outputs (interactions with between the system 
and its external world), including their behavioural relationships among them. Typically, a 
functional requirement is implemented in the system as one or more components or modules 
that fulfil some part of the application functionality.  



 The role of quality requirements in software architecture design  
 

  

10 

“While developers were used in the past to concentrating on providing the stated 
functional properties for software, today non-functional properties are becoming 
increasingly important” [9 p. 389]. Bass et al. in [2] state accurately that architecture 
addresses a lot more than just functional requirements. Nevertheless, these requirements put 
constrains how functional requirements are ought to be implemented. Unlike the functional 
requirement describing ‘what’ the system will do, a quality requirement describes ‘how’ it 
will do it. The definition, concept and nature of quality requirements are presented in 
Chapter Three. 
 
 

2.7 Styles and patterns in Software Architecture 
 

The literature such as [7] distinguishes between architectural styles and patterns. 
Styles are a categorization of systems and patterns exhibit general solutions to common, 
recurring problems. Also, patterns tend to be more detailed than styles. However, they are 
often synonymously termed as they provide a common usage and vocabulary. That is why the 
term ‘pattern’ will be used in the following and further discussion. 

Software architecture design consists of activities needed to specify a solution to 
balance the fulfilment of the requirements. In order to properly design the architecture an 
architect should know how particular design problems are solved and to be able to compare 
and discuss different candidate choices. Since the size and complexity of software systems 
continuously increase, experienced software designers and engineers use of certain, 
predefined ways of organizing software elements, because of the properties these structures 
provide. Patterns are one of these approaches to designing software architectures. 

Patterns are in general an essential tool in software architecture design that support 
the development, maintenance and evolution of large-scale systems. providing documented 
and communication proven design solutions to recurring problems, that also ensure a problem 
context, not only the specific results they propose. Patterns are recognized for many uses 
such as common design vocabulary, documentation and learning aid as well as their solution 
trade-offs.  

Their role has become important in describing software architecture due to the 
influence on software quality. Not only patterns are used to fulfil functional requirements of a 
system, but also, what is important to this research, help to address quality attributes 
corresponding to quality requirements. Literature sources, such as [2][7][9][16], prove that 
quality attributes are affected by decomposition of components and their responsibility. 
Different arrangements of components affect different quality attributes of the designed 
architecture without affecting the system’s functionality. This fact brings software 
architecture design in suitable ways for the purpose of this paper. However, patterns help to 
address only development quality requirements. It is almost impossible to evaluate the 
operational quality requirements at the architectural level. Descriptions, categories and 
detailed concepts of patterns are further described in section 4.2. 
 
 

2.8 Summary and remarks 
 

The most important concept of this chapter in terms of this research is that certain  
infrastructures of software architecture elements, i.e. components and connectors, cover to 
some degree several quality requirements. Patterns are recognized as topologies of such 
elements, and hence they are a great ‘tool’ for addressing quality requirements at the 
architectural level. 



 The role of quality requirements in software architecture design  
 

  

11 

Systems are built to satisfy their requirements. Software architecture design 
determines whether the software architecture has fulfilled system requirements. There is still 
lack of knowledge and what matters the most – little practical guidance on how to manage 
the design activity. There is a lack of precise design methods that guide software architecture 
for quality. Usually design means taking steps to provide the system with its expected 
functionality. However, a number of different attributes, properties, or qualities are of interest 
during software architecture design. These attributes are of crucial importance because they 
constrain quality requirements, which in turn constrain the design and development of 
software architecture. Chapter Four presents a detailed concept of software architecture 
design and related issues.  

It is obvious that the same requirement specification given to two different architects 
will produce two different architectures. The question is – how can we determine which one 
of them produced better architecture? There is no place for statements like good or bad 
architecture. Those candidates are less or more suitable for the stated purpose. One way to 
check whether the requirements were addressed, and assuming that all of them were covered, 
the next step is to measure ‘how well’ these requirements are fulfilled. 

Patterns can be very useful. On the other hand, if misunderstood, they can lead to 
disastrous solutions. The most important is whether a patterns fits the design and is the most 
applicable choice among others. Large-scale software systems will incorporate many patterns 
in their design as it is almost impossible to describe a large system with a single pattern. This 
leads to an observation about the way the quality requirements are concerned to be fulfilled 
or not by architectural means. The activity of measuring whether and to what degree quality 
requirements are coved by the architecture candidates is called software architecture 
evaluation (see section 4.3 for details). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

12 

 
 
 

Chapter Three – Quality Requirements 
 
 
 

3.1 Software quality 
 
This part should be introduced by the definition and meaning of software quality. 

Before dealing with quality, one has to realize what it really is to be able to control it. 
Understanding clearly the concept of quality in software makes it easier to be aware of its 
importance in software development. An increasing number of standards in the field of 
software quality emphasize the need for its observation and measurement. Literature also 
proves that the notion of software architecture has achieved the appropriate level for dealing 
with quality. Mostly it is due to many researches in quality attributes field 
([2][3][7][9][16][17][18][29][30][31][32] and many others). It is also recognized that 
architecture sets the software quality boundaries of the resulting system. This thesis 
underlines that the functionality of a system itself does not guarantee required software 
quality. Also, achieving quality is not simply checking if requirements are met; it includes 
specifying the measures and criteria to demonstrate their level of achievement. That is why 
quality requirements are extremely important and their role is investigated in this research. 
However, software quality assurance is an afterthought in most designs. 

Quality is subjective due to the lack of formalism and consensus in definition. Quality 
is defined in [20, p. 20] as “the totality of characteristics of an entity that bear on its ability 
to satisfy stated and implied needs”, whereas software quality definitions concern 
conformance to requirements. A good definition is presented in [18] in the following way: 
“the degree to which a system, component, or process meets customer or user needs or 
expectations”, and “ability of the system to satisfy its functional, nonfunctional, implied, and 
specified requirements” introduced in [1]. Software quality is often sacrificed in order to 
keep low development costs and project on schedule. The quality aspect can be attributed to 
process and product quality. 

The challenge of software development is to ensure that software has the right quality 
levels. More efforts are concentrating on ensuring that the quality is addressed at the 
architecture design level before the system is actually implemented. The best way is to 
measure the level of quality using quality models described in section 3.3 as they propose a 
more structured, fixed, and what is important quantitative view on software quality. In 
general, a quality model depicts how composition of particular quality characteristics and 
their relationships affect the total software quality. 

Architectural decisions have a great impact on the final software quality. It is possible 
to tell whether the most suitable architectural decisions have been made during the design 
without having the system developed and deployed if the system exhibits its required quality 
attributes [2]. That is why it is necessary to evaluate how a software architecture meets its 
quality related issues at the software architecture level. Section 4.3 focuses on the importance 
of software architecture evaluation as a method of identifying potential risks and verifying 
that the quality requirements have been addressed during the design. 

One of the goals of this research is to reveal the importance of quality requirements in 
software architecture and to ensure they are always taken into account during a design. 
Paying attention to them will bring nothing but benefits and increased software quality. 



 The role of quality requirements in software architecture design  
 

  

13 

Therefore, this general discussion of the software quality was presented right before one of 
the “core” concepts of this thesis, i.e. quality requirements explained in detail in the 
following section. Also, many researchers have proposed their own categorization of 
software quality, which resulted in proposing several quality models described in section 3.3. 
 
 

3.2 Quality Requirements 
 

3.2.1 Introduction  
 

It is worth to mention at the beginning that there is no one-standard, universal 
definition of quality requirements. Also, different people use different terminologies. Quality 
requirements are also recognized in literature as non-functional requirements, non-
behavioural requirements, system properties or constrains. Bass et al. [2] underline that 
terms of these requirements that consider the lack of functionality is an inappropriate term. A 
number of literature sources, and what are important world standards use the term quality 
requirements, and therefore it will be used in this paper. Their definition has to be customized 
in order to be properly used [10]. Hence, a definition, meaning, their categories and other 
relevant information from chosen literature sources will be presented. 

 
3.2.2 Definition and concept 

 
Different from a functional requirement (FR), a quality requirement (QR) defined in 

[17] as “a requirement that a software attribute be present in software to satisfy a contract, 
standard, specification, or other formally imposed document” is a requirement that does not 
concern functionality. As the name suggest, they are concerned with the quality delivered by 
the system. They “place restrictions on the product being developed and the development 
process, and they specify external constrains that the product must meet” [26, p. 187]. In 
other words, quality requirements determine constrains on the functionality. 

Quality requirements determine the overall qualities, attributes, or properties of a 
software system. Functional requirements describe ‘what’ a system is expected to do, 
whereas quality requirements put constrains or restrictions on ‘how’ these functional 
requirements are ought to be implemented. This means they are more above the functionality, 
i.e. system services, capabilities and behaviour. In consequence, functional requirements may 
need to be sacrificed in order to be able to address quality requirements [28]. 

Quality requirements may affect either one part of an application (concern one 
functional requirements abstraction of a system) or the system as a whole. To understand 
their importance it is worth to mention that some functional requirements may need to be 
sacrificed in order to meet the system quality requirements, and in result – the product goals. 
Furthermore, the lack of a system service (functional requirement) may degree the system 
usability, while not covering a quality requirement could make the system totally useless 
[28]. 
 

3.2.3 Quality Attributes 
 

A software system has many characteristics such as maintainability, reliability and 
usability. The quality of each of these characteristics determine the total software quality. 
Each characteristic can be specified as an property (attribute) of the system. A quality 
attribute is “a characteristic of software, or a generic term applying to quality factors, 
quality subfactors, or metric values” [17]. The previous section defined quality requirements. 



 The role of quality requirements in software architecture design  
 

  

14 

In other words, it is a measurable or observable property of a system that has some qualitative 
or quantitative value. Measurable means that a metric is given on how to verify that the 
architecture addresses the quality attributes. For example performance is a quality attribute. 
Helpful for the introduction of quality attributes (also referred as qualities, or “-ilities”)  is a 
definition of a quality requirement as “specification of the acceptable values of a quality 
attribute that must be present in the system” [1]. Quality requirements put constraints on a 
quality attributes. They are usually specific values, a scope, or ranges of values for quality 
attributes. “Quality requirements that can not be quantified can not be controlled either” [8, 
p. 77]. It means that in order to be able to satisfy quality requirements and generally – the 
quality of a software system, quality attributes have to be quantified. Having a requirement 
that system shall handle a specified amount of connections concurrently, then that is a 
requirement on quality attribute represented quantitatively, i.e. a quality requirement. 
Analogically, the response time shall be less than a time unit, is another example of a 
constraint put on performance. The same attribute, two different quality requirements.  
 

3.2.4 Quality Attribute impact 
 
Architecture design decisions have proven to impact certain quality attributes, which 

are not mutually exclusive – they often affect each other positively or negatively. “Non-
functional properties may contradict as well as complement each other” [9, p. 410]. Some 
quality attributes strengthen (positive impact) each other like flexibility and maintainability, 
safety and security, or maintainability and portability. Bass et al. mentions that “no quality 
can be maximized in a system without sacrificing some other quality or qualities” [2, p. 75]. 
In other words, as previously stated, some quality attributes may hinder others (negative 
impact). Some relationships are greatly proved by the literature. For example: “The benefit of 
exchangeability comes at the price of increased programming effort and possibly decreased 
run-time performance” [9, p. 49]. Other negative interdependencies include similarly 
maintainability and efficiency, security and usability, security and performance, etc. The 
quality attribute relationships are not “set in a stone”, i.e. the impact may be stronger or 
weaker depending on attributes and their design context.  

Since the quality attributes are interdependent, the design is a difficult task. In worst 
case, every design decision impacts multiple quality attributes negatively. Each architecture 
candidate has to be evaluated to check its impact on desired quality attributes. Further design 
decision may neglect previous ones. If determined that attributes are in conflict, it is 
important to find an architecture that provides an appropriate compromise. “When specifying 
non-functional requirements for a software architecture, you need explicitly consider the 
interdependencies and trade-offs that exist between them” [9, p.410]. A good design balances 
all the quality attributes, usually according to their prioritization as well as trade-offs 
(sections 3.2.6 and 3.2.7 respectively). 
 
To summarise, three types of quality attributes relationships are identified: 
 

• passive impact – a quality attribute does not influence the other, 
• positive impact – high value on a quality attribute determines  

a high value on the other, 
• negative impact – high value on a quality attribute determines  

a low value on the other. 
 
Figure 4 from [25] illustrates how identified quality attributes influence each other. 

However, quality attributes are not specified in terms whether they strengthen or hinder each 



 The role of quality requirements in software architecture design  
 

  

15 

other. The illustration indicates only that a relationship between a pair of attributes exist – 
one depends on another. High impact between attributes is presented with a light circle. Dark 
circle describes low relationship, whereas a blank field denotes passive influence (no 
dependencies). 

 

 
 

Figure 4 - Quality attribute impact and relationships [27] 
 
 

3.2.5 Quality requirements categories 
 

Bosch in [7] categorized quality requirements as development or operational. 
Development quality requirements are those qualities relevant from a developer point of 
view, from the software engineering perspective, e.g. maintainability, demonstrability, 
extensibility, flexibility, reusability, portability, etc. Maintainability, for example, is more 
important to developers, because it enables the chance of a system to make changes, fixing 
bugs, and further development of the system. On the opposite, there are operational quality 
requirements important from the user perspective, because they are noticeable and 
measurable during the system’s runtime (“qualities of the system in operation” [7, p. 27]) 
like availability, efficiency, flexibility, performance, security, usability, etc. Users see the 
performance more important, as it affects the usability of the system. Bass et al. [2] used 
similar categorisation against which the designed system can be measured – attributes 
observable via execution and those not observable via execution. Some qualities, such as 
flexibility or understandability, are important from both perspectives and therefore, could be 
classified into both categories depending on the quality model is used. A good point to 
mention is that quality of development quality requirements is inherently difficult to measure. 
Performance and reliability (operational quality requirements) may be measured to certain 
degree using numeric criteria (e.g. by executing the system), but attributes like 
maintainability are almost impossible to measure without previously stating what these 
qualities mean, especially to different groups of stakeholders.  



 The role of quality requirements in software architecture design  
 

  

16 

Kotonya and Sommerville in [27] classify quality requirements2 into three major 
groups: product requirements (reliability, usability, etc.), process requirements (delivery, 
implementation, standards) and external requirements (economic constrains, legal constrains, 
interoperability). Product requirements are similar to Bosch’s operational requirements; they 
specify product behaviour.  

Quality characteristics and associated metrics (section 4.3.3) are used to defining 
quality requirements. 
 

3.2.6 Prioritization 
 

Functional requirements usually have an associated priority: required, preferred or 
optional. Why not do that with quality requirements? It is a significant task to prioritize 
quality requirements too. Prioritizing quality requirements is crucial since not all of them are 
created by equal means. Moreover, different quality attributes are not of equal importance.  
 In order to balance between the specified quality requirements a priority has to be 
assigned to each of them to indicate how important they are. Stakeholders are commonly 
responsible for establishing priorities. Different stakeholders have varying interest and thus 
prioritize quality attributes in a different way. If they decide that all requirements are equally 
essential, the harder it will be to achieve an effective balance. It is highly recommended to 
establish a preference of one quality requirement against another (others) in case of conflict. 

Customers and developers must settle on an agreement on requirements prioritization. 
One prioritization scale may not be enough, while sometimes different stakeholders need 
different scales. Developers will not know what is important to the customers, and of course, 
customers cannot specify the cost, effort, time needed and technical difficulty associated with 
some quality requirements. Especially that quality requirements are often invisible to 
customers. Once quality requirements are specified and classified, they have to be decided on 
which must to be implemented and which ones could be rejected if there should be a shortage 
of budget, time or in case of technical difficulties.  

As a result of prioritization activity, quality requirements will be weighed according 
to their importance. Priority is a function that provides values necessary for comparing 
quality requirements, and from the position of this research it enables to select the most 
appropriate software architecture among alternatives with similar properties. 

 
3.2.7 Trade-offs 

 
Trade-offs are about analyzing quality requirements possibilities with regards to how 

well a software architecture meets each of these requirements, and reasons about their 
possible conflicts. This often enables further quality requirements refinement and according 
to quality attribute impact (section 3.2.4) this might exhibit new conflicts. Besides 
prioritization, a good way of balancing quality requirements are their trade-offs. Software 
architecture design involves a series of trade-off decisions among quality requirements to 
obtain a compromise design which best meets these requirements. It is important to make 
trade-offs early in software architecture design because such decisions are hard and 
expensive to be implemented in further stages. 

Designs almost always require trade-offs between competing design choices to meet 
quality requirements. Large-scale software systems often do not fulfil all of their quality 
requirements, but select the most suitable architectural solutions using trade-off mechanism 

                                                 
2 Gerald Kotonya and Ian  Sommerville in [27] use the term non-functional requirements similarly, but not 
equivalent to quality requirements. 



 The role of quality requirements in software architecture design  
 

  

17 

with respect to significant parameters between different quality requirements. By significant 
parameters two things are meant that can be used on a qualitative and quantitative basis: 

• priorities between different quality requirements discussed in previous section, 
• positive and negative impact of quality attributes on each other. 

These factors are used during the early design phases, and of course, during the software 
architecture design. 

Based on little personal experience in software architecture design an example of 
trade-offs analysis is presented. Without any automated support and hence – based mostly on 
architects knowledge and intuition two candidate architectural structures were chosen during 
the design activity. These were described in terms of their benefits and liabilities so that in 
future persons in interests can look why certain solution was accepted and the others rejected. 
Finally, the rationale for the final decision between potential solutions was described one of 
the architectural designs proposed for this system. Figure 5 illustrates a trade-off analysis 
used in the provided example. 
 

 
  1. Trade-off analysis 
 
      1.1. Structure A 
 

Benefits: Liabilities: 
+ 
+ 
+ 

- 
- 
- 

 
     1.2 Structure B 
 

Benefits: Liabilities: 
+ 
+ 
+ 

- 
- 
- 

 
     1.3. Rationale for the chosen solution 
 

 
Figure 5 - An example trade-off analysis method 

 
3.2.8 Quality Requirements in practise 

 
Developers are constantly under pressure to deliver the software product on time and 

on budget. In result, projects lack in quality requirements as they tend to focus only on 
delivering functionality. Insufficient time and effort are spent on the quality requirement-
related activities associated with the design of software architecture. As it will be presented, a 
better approach is to invest additional time on eliciting, gathering, analysis and generally 
handling quality requirements. It will benefit in the final software product quality. Thus, the 
total quality of a system is ultimately determined by the quality of each requirement. By 
leaving them unstated, the software system lacks in quality and in worst case – lead to a 
series of failures in software development and afterwards during the system usage. However, 
these types of requirements often are neglected. Many software requirements specifications 



 The role of quality requirements in software architecture design  
 

  

18 

(also called software requirements documents), being an official statement of what is 
required, are either full of badly written (quality) requirements or do not specify them at all. 
Most applications lack in these areas that are not concerned with functionality. This is often a 
result of the system’s complexity and badly specified needs. If they are specified at all, they 
are of poor quality, i.e. incomplete, inconsistent, ambiguous, or incorrect. Their completeness 
means that all quality requirements should be defined. Consistency means that their 
definitions should not contradict each other. Quality requirement is unambiguous when it 
cannot be interpreted in more than one way. Correctness means that it should accurately 
reveal system needs. 

Software architecture notations should be capable of stating quality requirements. 
None of the studied addresses quality aspects of the architecture. UML use-case models are 
used to present the functionality of a system expressed by functional requirements. Quality 
requirements, on the other hand, are often described below them in supplementary text or as 
footnotes. Table 3 illustrates such examples. Notations should have the ability to visualise 
quality requirements, or at least support their estimations while a difficult task is to present 
graphically the above example. 

Another problem of quality requirements in requirements specifications is how to 
specify the notion of software quality. Much attention should be paid on its understanding 
and so that all participants share the same meaning of the quality aspects. Everyone has to 
agree on how quality requirements have to be quantified and, in consequence measured if 
they address the specified level of quality. 

On the opposite of functional requirements, quality requirements are often hard to 
specify, test and verify. Design methodologies are strong in expressing functionality but tend 
to be weak when it comes to quality requirements. There is little precise guidance available 
on how to elicit and specify quality requirements. Main reasons include misunderstanding of 
their importance, their mutual dependencies, inadequate languages or inappropriate 
formalism of expression, and many more. Those are the common reasons why they are 
afterwards addressed subjectively. This results in architectural solutions that badly address 
quality requirements. Mostly because of the inherent difficulty in designing for quality 
requirements, which is provoked by the lack of documented patterns and their benefits and 
liabilities for certain quality attributes that guide the design for quality requirements. 
However, an important step towards designing with quality requirements is Bosch’s design 
method [7] depicted in section 4.4.2. 
 

3.2.9 Summary and remarks  
 

Quality requirements does not concern functionality. As the name suggest, they are 
concerned with the quality delivered by the system. They “place restrictions on the product 
being developed and the development process, and they specify external constrains that the 
product must meet” [27, p. 187]. In other words, quality requirements determine constrains 
on the functionality. 

The goal of this thesis is not to give guidance how to elicit and specify quality 
requirements, but to investigate their role in software architecture design. Nevertheless, one 
has to be aware that badly written requirements are useless for their further analysis. Quality 
requirements specify system attributes, such as maintainability, reliability and safety. They 
are a result of putting constraints on one or more of these attributes. Attention to 
requirements is crucial for quality. By leaving certain quality requirements not covered, the 
system lacks in required quality level.  

Many of the quality requirements cannot be measured or calculated before the system 
is actually implemented, and therefore difficult to validate. Yet they are hard to deal with 



 The role of quality requirements in software architecture design  
 

  

19 

since they often tend to interact with each other, having positive or negative influence. 
However, during the design phase, much of the quality aspects of a system can be addressed. 
During software architecture design such requirements need to be prioritized and balanced in 
design tradeoffs when architects have to decide upon the selection of a particular software 
architecture solution.  

Probably the most difficult activity during software architecture design is the 
transformation from requirements, especially quality requirements into the particular 
structural or behavioural aspects of software architecture due to lack of methodological and 
technological available support. Hence, this paper is an attempt of bridging the gap between 
quality requirements and software architecture. 
 
 

3.3 Quality Models 
 

3.3.1 Introduction  
 

Similarly to quality requirements, which have no one-standard definition, there is no 
one-complete, universal list of quality attributes. However, many taxonomies and standards 
were published to define quality attributes such as IEEE, ISO, and ANSI. 

The terms and definitions around quality present rather its qualitative view. Quality 
models are used to reveal a structurized, and what is important – quantitative view on quality. 
Their intention is to capture quality in a model since the total quality consist of the 
composition of particular characteristics. A quality model sets a standard taxonomy for 
quality attributes and relationships among them. It studies aspects of software systems which 
relate to the notion of software quality. It also serves a framework for quality attributes 
within which to analyze requirements and design decisions. There are several well-known 
quality models such as McCall’s (1977), Boehm’s (1978), FURPS/FURPS+, and ISO/IEC 
9126. The ISO/IEC standard will be detailed described, as the one this research refers to. 
Two first are briefly mentioned due to the fact that ISO/IEC 9126 [20] was based on the 
McCall’s and Boehm’s models. FURPS/FURPS+ is presented as it is a relatively recent 
quality model proposal, and resembles in its structural manner the other mentioned models. 
The main difference between them is the classification and definition of quality attributes, as 
well as the depth of hierarchy and a different total number of characteristics. 

 

3.3.2 McCall’s Quality Model 
 

Jim McCall and his colleagues in [26] organized the software product quality into 
three categories: product operation, product revision, and product transition, where to each 
category a set of quality characteristics is associated. Product operation focuses on qualities 
important from user perspective (operational characteristics). It contains correctness, 
reliability, efficiency, integrity, and usability. Product revision includes maintainability, 
testability, and flexibility. These characteristics describe the ability of a system to make 
changes. Product transition presents the software adaptability to new environments. It 
contains portability, reusability, and interoperability.  

Figure 5 presents high-level quality attributes, termed quality factors in this model. 
McCall distinguished also a second level quality attributes, termed quality criteria, which 
describe the internal view of the software, from the developer perspective. The model also 
depicts metrics that are defined and used to provide a scale and method for characteristics 
measurement. 
 



 The role of quality requirements in software architecture design  
 

  

20 

 
 

Figure 6 - McCall software quality model divided in three types of quality characteristics 
 

3.3.3 Boehm’s Quality Model 
 
 Barry Boehm in [6] presented similar approach sharing a common subset with the 
McCall’s model and identifying additional quality attributes. It also presents a model based 
on hierarchical dependencies among attributes, structured around high-level characteristics, 
intermediate level characteristics, primitive characteristics (metrics). McCall’s quality model 
was basically focused on the measurement of the high-level attributes (quality factors), 
whereas Boehm’s model considers a wider set of characteristics. Of course, each 
characteristic of both models set the boundaries of the overall quality level. 
 

3.3.4 FURPS/FURPS+ 
 

The FURPS model used by Unified Process is similarly structured as the previous two 
described models. It provides five following categories of quality attributes: 

• Functionality – A set of attributes characterizing feature sets, accuracy, 
interoperability, and security. 

• Usability – Attributes that depict the usage effort. They include understandability, 
operability, user documentation, and other human factors. 

• Reliability – Characteristics that involve fault tolerance, recoverability, predictability, 
accuracy, and Mean Time Between Failure (MTBF).  

• Performance – Attributes that consider response and processing time, level of 
performance in comparison to the amount of resources used, efficiency, and 
availability. 

• Supportability – Characteristics that include the effort needed to incorporate new 
requirements and to make modifications. It also concerns configurability, 
serviceability, installability, and localizability. 

 



 The role of quality requirements in software architecture design  
 

  

21 

FURPS acronym is named after first letters of each above category. Later the FURPS 
model was extended by IBM Rational Software into FURPS+ which defines additional 
quality requirements categories: implementation requirements (constraints on tools, 
programming languages, and hardware), interface requirements (interaction with external 
systems), operations requirements (constrains on administration and management), packaging 
requirements (constraints on system delivery), and legal requirements (licences, law 
regulations). The FURPS categories are divided into two different types: functional (F) and 
non-functional (URPS). As it was stated earlier quality requirements are also referred as non-
functional requirements such as in FURPS. However, what is interesting that the model 
defines quality requirements as non-functional requirements, which are grouped into “URPS” 
categories. Additional non-functional requirements are called constrains or pseudo 
requirements.  

 
3.3.5 ISO/IEC 9126 Quality Model 

 
Like any other quality model, ISO/IEC 9126 serves a useful tool for quality 

requirement engineering as well as quality evaluation. Its quality characteristics and 
associated metrics define a framework for specifying quality requirements, and for trade-offs 
between software product capabilities. ISO/IEC 9126 quality model enables software product 
quality to be specified and evaluated from different perspectives. It can be used by different 
groups of stakeholders, i.e. architects, developers, and testers responsible for dealing with 
software product quality. It is structured basically like the two, above mentioned models. 
However, it includes also the functionality as one of the quality characteristics. Functionality 
is concerned with ‘what’ the software does to meet stated and implied needs, whereas the 
other characteristics are concerned with ‘when’ and ‘how’ it fulfils these needs. Also, 
differently from McCall and Boehm, the model identifies both internal and external quality 
characteristics. This research deals with internal quality, as the software quality is measured 
and evaluated by quality attributes. ISO/IEC 9126 also differs from previous models in 
having a one-to-one hierarchy where each subcharacteristic relates to only one characteristic. 
Each quality characteristic may be broken down into subcharacteristics, which can also be 
broken down. Figure 7 depicts the top-level characteristics with their general meaning.  
 

 
 

Figure 7 - ISO/IEC 9126 six main software quality characteristics 
 
 



 The role of quality requirements in software architecture design  
 

  

22 

The model defines three types of software product quality:  
• quality in use (software product used in a specific environment and context from the 

user’s perspective),  
• external quality (executable software product),  
• and internal quality (software product during development).  

 
That is why software quality requirements are defined here as external quality requirements, 
that specify the level of required quality from the external view, and internal quality 
requirements which specify the required level of quality from the internal view of the 
product. ISO/IEC 9126 consists of six internal and external quality characteristics namely: 
functionality, reliability, usability, maintainability, efficiency, and portability. Each of these 
is divided into several quality attributes or subcharacteristics, e.g. reliability is composed of 
maturity, fault tolerance, and recoverability.  
 

 
 

Figure 8 - ISO/IEC 9126 quality model for external and internal quality 
 
Figure 8 presents the hierarchical structure of ISO/IEC 9126 quality model. These 
subcharacteristics are measured through metrics described in the following section. The top-
level characteristics are defined as externally observable features for each software system. 
Different software products imply its characteristics to be considered of different importance 
than others. 

There are compliance subcharacteristics in every of the six main characteristics that 
were neither listed above in Table 1 nor in Figure 8 Compliance means in general to adhere 
to standards, conventions or regulations in laws concerning the high level and “fellow” 
attributes at the same level. Adhering to compliance for a top-level characteristic means that 
the subcharacteristics are considered. 



 The role of quality requirements in software architecture design  
 

  

23 

 
Characteristics Subcharacteristics Meaning 

 A set of attributes that relate to the capability to provide functions 
used under specified conditions. The functions are those that 
satisfy stated or implied needs.  

Suitability The capability to provide an appropriate set of functions for 
specified tasks and user objectives. Suitability also affects 
operability. 

Accuracy The capability to provide the required or agreed results or effects 
with the needed degree of precision. 

Interoperability The capability to interact with one or more specified systems. 

1. Functionality 

Security The capability to protect information and data so that unauthorised 
persons or systems cannot read or modify them.   

 A set of attributes that relate to the capability of a software to 
maintain its level of performance under stated conditions for a 
certain time period. 

Maturity The capability to avoid failure as a result of faults in the software. 
Fault tolerance The capability to maintain a specified level of performance in 

cases of software faults or of infringement of its specified 
interface. 

2. Reliability 

Recoverability The capability to re-establish a specified level of performance and 
recover the data directly affected in the case of a failure. 

 A set of attributes that relate to the capability of the software 
product to be understood, learned, used and attractive to the user, 
when used under specified conditions. Some aspects of 
functionality, reliability and efficiency may also affect usability. 

Understandability The capability to enable the user to understand whether the 
software is suitable, and how it can be used for particular tasks and 
conditions of use. 

Learnability User’s efforts for learning the software product. 
Operability The capability to enable the user to operate and control the 

software product. Suitability, changeability, adaptability and 
installability may affect operability. 

3. Usability 

Attractiveness The capability to make the software more attractive to the user, 
such as the use of colour and the nature of the graphical design. 

 A set of attributes that relate to efforts needed to make specified 
modifications. Modifications include corrections, improvements or 
adaptation of the software to changes in environment, and in 
requirements and functional specifications. 

Analyzability The capability of the software product to be diagnosed for 
deficiencies or causes of failures in the software, or for the parts to 
be modified to be identified. 

Changeability The capability to enable a specified modification to be 
implemented. 

Stability The capability to avoid unexpected effects from modifications of 
the software. 

4. Maintainability 

Testability The capability to enable modified software to be validated. 
 A set of attributes that relate to the capability to provide 

appropriate performance, relative to the amount of resources used, 
under stated conditions. 

Time behaviour The capability to provide appropriate response and processing 
times and throughput rates when performing a software product 
function, under stated conditions. 

5. Efficiency 

Resource utilization The capability to use appropriate amounts and types of resources 
when the software performs its function under stated conditions. 
Human resources are here excluded. 

6. Portability 
 

 A set of attributes that relate to the ability of a software product to 
be transferred from one organisational, hardware or software 
environment to another.  



 The role of quality requirements in software architecture design  
 

  

24 

Adaptability The capability of the software product to be adapted for different 
specified environments without applying actions or means other 
than those provided for this purpose for the software considered. 

Installability Efforts needed to install the software product in a specified 
environment.  

Co-existence The capability of the software product to co-exist with other 
independent software in a common environment sharing common 
resources. 

Replaceability The capability of the software product to be used in place of 
another specified software product for the same purpose in the 
same environment. Replaceability includes upgrading.  

 
Table 1 - Quality attribute glossary (descriptions) 

Table 1 serves a glossary for the quality attributes used in this research. Each attribute 
corresponds to a capability of a software product to provide a certain quality, which 
definitions were introduced above.  

 
3.3.6 ISO/IEC 9126 metrics 

 
ID Name, contains 

ISO/IEC 9126-1 Software Engineering – Product quality, Part 1: Quality model 
ISO/IEC 9126-2 Software Engineering – Product quality, Part 2: External quality metrics 
ISO/IEC 9126-3 Software Engineering – Product quality, Part 3: Internal quality metrics 
ISO/IEC 9126-4 Software Engineering – Product quality, Part 4: Quality in use metrics 

 
Table 2 - List of ISO/IEC 9126 standards 

 
It is not the intention of this section to give an explanation what metrics are, as they 

were introduced in section 2.5.3.6, but to briefly describe the metrics used by the ISO 9126 
quality model. ISO/IEC 9126 contains four parts under the general title “Software 
engineering — Product Quality”. First part defines a quality model for a software product. 
The second, third and fourth part suggest metrics that define quantitative scale and 
measurement method, which can be used for measuring quality attributes depicted by the first 
part: external, internal, and quality in use metrics respectively. External metrics are used in a 
n executable software product. Different from external, internal metrics do not rely on 
software execution. They are applicable in a software product during development. Quality in 
use metrics are used when the final software product is executed only in real conditions. 
 

Quality attribute Metrics 
Functionality - number of functions suitable for performing tasks 

- degree to which the functions meet user objectives 
- security inspections 

Reliability 
 

- mean-time-to-failure 
- probability of failure 
- rate of failure, availability 
- number of detected faults 
- breakdowns occurrence 
- repair time, time to restart after failure 

Usability - training time 
- number of interface functions 
- input and output data items 
- tutorials, demonstrations 
- user observations 



 The role of quality requirements in software architecture design  
 

  

25 

Maintainability - failure occurrence after change 
- number of components requiring modifications 
- time for identifying operations that cause failures 

Efficiency - transactions/sec 
- time to complete a task 
- response time 
- screen refresh time 

Portability  - number of target environments 
- time to adapt to a new environment 
- number of components affected by switching environments 
- installation time 

 
Table 3 - Example metrics 

 
Table 3 presents several ISO/IEC 9126 metrics. These examples illustrate how 

metrics can be used to verify whether the required quality attributes are fulfilled. For 
instance, a time behaviour metric aims to measure a) what is the time taken to complete a 
certain task; b) how long does it take before a system response to a certain operation? That 
means they can be used during the software architecture evaluation (see section 4.3). 
 

3.3.7 Summary and remarks 
 
 There are many quality models that suggest ways of dealing with its quality attributes. 
Presented models are similar in the idea that software quality is decomposed in a number of 
high level characteristics, which are further decomposed in a number of subcharacteristics 
(attributes). Metrics (discussed in section 4.3.3) are a scale and a method of measuring these 
subcharacteristics. 

Models differ from each other in how software quality is decomposed, i.e. the number 
of hierarchical levels and the total number of characteristics. McCall’s [26] divided it in 11 
factors, Boehm’s [6] into 7 factors, whereas ISO/IEC 9126 [20] consists of total 21 
characteristics arranged in 6 main areas. Sometimes a high level factor from one model is a 
subfactor according to another.  

Literature, such as [6][20][26], provides a useful tool for discussing, planning, and 
rating the software quality. Each model depicts how its quality characteristics contribute to 
the whole product quality. It is not easy to estimate which model is of the best quality. 
Standards are published by a number of agencies such as ANSI (American National 
Standards Institute), IEEE (Institute of Electrical and Electronics Engineers) and ISO 
(International Standards Organization). They are developed to provide high-level, systematic 
and global guidance as they often abstract from detailed descriptions. The ISO/IEC 9126 [20] 
aims to provide a rational and systematic approach to dealing with quality attributes. It has 
been chosen as the most suitable for several reasons. The ISO/IEC 9126 standard serves a 
complete set of metrics for evaluating software quality and contains attributes which other 
models lack in. Therefore, it is commonly used by the industry. The model also serves 
solutions independent of technology and situation. ISO/IEC 9126 level of abstraction enables 
to its general usage and applicability. When composing a requirements document, the 
appropriate model properties can be filled in for situation at hand. Specifying all 
characteristics is not a guarantee for accuracy and completeness. On the other hand, the 
presented model provides little guidance on what should  be measured and how the results 
should be used in the architecture evaluation as it strongly depends on the context and 
purpose of its use. 



 The role of quality requirements in software architecture design  
 

  

26 

Although quality models describe quality attributes, their definitions are often 
recognized as ambiguous and measuring the amount of quality still remains a difficult task. 
Software quality evaluation techniques allow measuring several of the quality attributes, but 
there is still lack of precise methods that could be preformed in straightforward way. A 
quality model is a useful tool since it brings ideas of measuring quality, but nevertheless it 
does not depict clearly defined methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

27 

 
 
 
 

Chapter Four – Architectural Design and Evaluation 
 
 
 

4.1 Introduction 
 
 This research investigates the role of quality requirements in software architecture 
design, but what exactly does that mean? Software architecture and its relevant issues were 
defined and discussed in Chapter Two. Afterwards, software quality requirements were 
presented in terms of their impact on software architecture in Chapter Three. Understanding 
the terms software architecture and quality requirements with the analysis of their 
relationships is the first of the several interests of this thesis. This chapter deals with the wide 
concepts of architectural design an evaluation. 

First of all, there is a difference between the terms architecture and design which are 
often used as synonyms. It is said that architecture is design, but not all design is architecture. 
A related misunderstanding is about the software architecture elements which are named 
architectural and design elements. Of course, their usage depends of the level abstraction 
they concern. This research distinguishes between these terms and recommends similar 
approach. Therefore, it is assumed that: 

1. A software architecture is an artefact; it comprises the highest level description of a 
system structure.  

2. Design (architectural design or software architecture design) stands for an activity that 
results in a software architecture. Also, design consists of a set of decisions made by 
the software architect to ensure that the system meets its functional and quality 
requirements.  

However, architecture and design are termed interchangeably in practise. Often, the amount 
of detail is insufficient to characterize the differences [13] and the software architecture is 
seen as a tool that deals with the design and implementation of a structure of the system at 
highest abstraction level [2]. At the same time it is regarded as one of the most important 
artefacts. In consequence, a solution is required. For example two phases can be 
distinguished: architectural design and detailed design with respect to the abstraction level. 
Another possible solution can distinguish between architectural modelling and architectural 
design. Either way, but software engineering should mark a clear boundary between the 
varying degrees of abstraction to avoid pointless confusions.  
 
 “Software design is the activity performed by a software developer 

that results in the software architecture of a system. It is concerned 
with specifying the components of a software system and the 
relationships between them given functional and not-functional 
properties” [9, p. 390] 

 

 
To summarise, in this thesis a (architectural) design is termed similarly to the above 

Buschmann et al. definition as a process/activity that involves (design) decisions to ensure 
the fulfilment of (software) requirements and results in a artefact called software architecture. 
 



 The role of quality requirements in software architecture design  
 

  

28 

Software architecture design involves [23]: 
• domain analysis and understanding the requirements, 
• designing an architecture to provide architectural solutions in order to meet 

requirements and desired qualities, 
• allocating the  requirements into components and connections, 
• providing a description of an architecture, 
• architecture evaluation with respect to the requirements, 
• documenting the architecture with a rationale to design decisions. 

 
 A number of mature design methods exist. These provide a series of steps for 
designing a software architecture. In other words, design methods are ways of representing a 
software architecture, usually with the help of views. A view is a description of a whole 
system from the perspective of a related set of concerns. Chapter Two presents three 
following software architecture design methods: 
 

• Reference Model for Open Distributed Processing (RM-ODP), 
• The “4+1” view model, 
• Hofmeister et al. design method, 
• QASAR - Bosch design method. 

 
The last one – QASAR is especially marked in italic as it is the method chosen for further 
analysis. It is described in detail in sections 4.3.3 and 4.4.2. 

Software architecture design consists of a set of decisions made by the architect to 
ensure that the system meets its software requirements. The decisions made early in the 
design process determine greatly the desired quality attributes. These fundamental 
architectural choices are the hardest to be further changed. Therefore, they are the most 
significant and require special attention. This includes the usage of certain acknowledged 
architectural design techniques, i.e. patterns. Patterns are a proved instrument for describing 
software architectures since patterns represent a solution to a number of design problems. 
Furthermore, patterns are an essential tool in software architecture design due to the fact they 
address quality attributes corresponding to the quality requirements of a system. Hence, 
patterns are categorised in this thesis as means for architectural design.  

Software architecture design must in its process have an activity to estimate whether 
the design result, i.e. software architecture, is capable of fulfilling software requirements. 
Unfortunately, in practise requirements specifications often lack in quality requirements 
required for an architectural design and the evaluation. Several methods for evaluating 
software architectures have been proposed in the literature [7][13] in order to assist design 
methods the achievement quality requirements. Moreover, Bosch [7] introduced Architecture 
assessments are performed in one or more development stages. A number of the assessment 
methods focus on analyzing a single quality attribute. The concept of architecture evaluation, 
the available techniques and a detailed discussion are presented in section 4.3. 

Architecture views divide the architecture into parts where each of them describes the 
system from a different perspective and focus on those aspects that address the concerns of 
stakeholders. This research has two goals of using views: 

• different views exhibit different quality attributes important during software 
architecture design and evaluation, 

• patterns provide support in designing view models, and in composing views based on 
them. 

 



 The role of quality requirements in software architecture design  
 

  

29 

 
4.2 Patterns 

 
4.2.1 Definitions and categories  

 
In practice, architectures are usually not developed from scratch. The usage of 

patterns is an important tool for building high-quality software architectures [9]. Patterns 
have been briefly discussed in section 2.7. This part brings patterns closer to the practical 
area of this research – the recommendation framework. Buschmann et al. [9] give the 
following description of a pattern: 
 
 “A pattern for software architecture describes a particular 

recurring design problem that arises in specific design contexts, and 
presents a well-proven generic scheme for its solution. The solution 
scheme is specified by describing its constituent components, their 
responsibilities and relationships, and the ways in which they 
collaborate” [9, p. 8] 

 

 
The terms related to software architecture including components, connectors, and 

relationships among them are introduced in section 2.1.3. and will not be reminded here. 
Patterns are divided further in [9] with respect to their range of scale and abstraction 

into three main categories: architectural patterns, design patterns and idioms. Figure 9 
illustrates Buschmann et al. [9] categories. Architectural patterns define overall structuring 
principles. They define templates for concrete software architectures providing system-wide 
organization schemes that refer to the system as a whole. Their description and detailed 
concept is presented further in section 4.2.4.  

 
 

 “A design pattern provides a scheme for refining the subsystems or 
components of a software system, or the relationships between them. 
It describes a commonly-recurring structure of communicating 
components that solves a general design problem within a particular 
context.” [9, p. 13] 

 

 
Table 4 illustrates the difference between architectural patterns and design patterns. 

Although the idea originates from the confusion between architecture and design as 
synonyms, the concept remains the same – the level of abstraction is the difference. Design 
patterns are medium-scale patterns that regard several smaller architectural units in contrast 
to architectural patterns. They provide structures for decomposing complex services or 
components being independent of particular programming language or programming 
paradigm as it is in case of idioms. The fundamental structure of a software architecture is not 
affected by design patterns. They rather have strong influence on the architecture of a 
subsystem or a component. There are eight design patterns introduced in [9]: whole-part, 
master-slave, proxy, command processor, view handler, forwarder-receiver, client-
dispatcher-server, and publisher-subscriber. 
 
 “An idiom is a low-level pattern specific to a programming 

language. An idiom describes how to implement particular aspects 
of components or the relationships between them using the features 
of the given language.” [9, p. 14] 

 



 The role of quality requirements in software architecture design  
 

  

30 

Idioms represent the lowest-level patterns. They deal with the implementation matters 
of particular design issues, specific to programming languages. Sometimes idioms useful for 
one programming language does not find usage in another. They can also directly address the 
concrete implementation of certain design patterns. Idioms demonstrate competent use of 
programming language features such as memory management in C++. Therefore, idioms also 
are recognized as means for teaching a programming language and a communication tool 
among developers. 
 

4.2.2 Why Patterns? 
 

This paper focuses on software architecture in the context of patterns for several 
reasons. These among others previously stated in section 2.7 are listed below: 
 

• Patterns document existing, well-proven software architecture design experience.  
• Patterns provide a common vocabulary and understanding for design principles 

among different types of stakeholders. 
• Patterns are proven means for documenting software architectures structures and 

rationale for design decisions. 
• Patterns help to build and manage complex and heterogeneous software architectures.  

 
These are a general rationale why patterns are used to address the software 

architecture design activity in this research. However, following reasons deserve more 
attention in discussion. 

Software architecture evaluation is performed to measure quality attributes, so these 
can be compared to the quality requirements. If one or more of those requirements are not 
fulfilled, the architecture needs changing in order to improve its quality attributes. Bosch 
emphasizes in [7, p. 116] that “with each architectural style3 there is an associated fitness for 
the quality attributes” and that is why the choice of the  most suitable architectural pattern 
depends on the system’s quality requirements.  

If a quality attribute is not covered, there are two types of change – either change the 
software architecture context  or change the architecture itself [7]. Of course, assuming that 
the context or the requirement specification could not be changed, the architecture is 
subjected to new design decisions such as the architecture transformation discussed in 
section 4.3.3. One of the method of transformation mentioned was imposing an architectural 
pattern. This is an excellent example how patterns fit in the software architecture design and 
bridge the gap from the requirements to design. 

Buschmann et al [9] and Bosch [7], present styles and patterns in terms of quality 
attributes. Those literature depict both, positive and negative quality attribute impact so that 
patterns alternatives reveal its strengths and weaknesses. Most quality attributes assessments 
regarding patterns will base on these sources. 

Patterns applied late in the development cycle involve more costs. They are used to 
shape the architecture at the very beginning of the design. Hence, patterns as an approach to 
designing software architecture should be considered in the first place to find the most 
suitable architecture. 
 
 

                                                 
3 Jan Bosch in [7] uses the term architectural style similarly for architectural pattern described by Buschmann 
et al. in [9]. 



 The role of quality requirements in software architecture design  
 

  

31 

4.2.3 Why Architectural Patterns? 
 

Buschmann et al. [9] architectural patterns are chosen as they are specified in a 
context that allows for the practical investigation how quality requirements that impact the 
software architecture design. They were selected among other pattern categories for 
following reasons. 

A difficult task is to analyze the designed architecture that has not yet been written 
down. Patterns that comprise the architectural description have a significant impact on the 
ability to analyze an architecture for certain quality attributes. These pattern are relevant for 
the analysis, while they provide knowledge for addressing certain quality aspects that include 
specific quality requirements. In some cases, a specific model is necessary for a set of quality 
attributes. Software architecture design ensures that requirements, and especially quality 
requirements, are fulfilled. One way to do that is to start the design process with a pattern that 
addresses certain quality attributes.  

Idioms depict language-specific implementation issues and this paper is an attempt to 
focus on the software architecture at high abstraction level. That is why they were rejected in 
first place. The architecture in this research should deal with its structure from the scratch, i.e. 
from the very beginning when the fundamental decisions are taken. Different from design 
patterns which address parts of the architecture, i.e. subsystems or components of a system, 
architectural patterns affect the whole fundamental structure. Architectural patterns represent 
the highest-level patterns in system hierarchy as they specify the primary organization 
scheme for the software architecture. As every following development activity is governed by 
this structure these kind of patterns have the most significant contribution to the shape of 
architecture. That is why they were chosen as a method for software architecture design in 
this research. However, software engineers should be familiar in understanding other patterns 
beyond those categorized as architectural. 

 
4.2.4 Architectural Patterns  

 
An important concept in the area of software architecture are architectural patterns. 

These, similarly to what Bosch recognizes as architectural styles [7], Buschmann et al. 
describes as architectural patterns due to the fact that these both pattern types have similar, 
significant usage, i.e. they set the overall system, the fundamental structure. Buschmann et al. 
[9] presents a description of this concept in a following way: 
 
 “ Architectural patterns express fundamental structural 

organization schemas for software systems. They provide a set of 
predefined subsystems, specify their responsibilities, and include 
rules and guidelines for organizing the relationships between them” 

[9, p. 25] 

 

 
Architectural patterns define some overall structuring principles. They capture fundamental, 
system-wide structural organizations of software systems. Their primary task is to provide 
descriptions of subsystems, define their responsibilities, and specify how they interact with 
each other to solve a particular design problem. By dealing with quality attributes an 
architectural pattern helps to decide if software architecture fulfils quality requirements. An 
architect should however be familiar with other patterns well beyond those so called 
architectural. Figure 9 illustrates architectural patterns and their categories. 
 
 



 The role of quality requirements in software architecture design  
 

  

32 

 
 

Figure 9 - Buschmann et al. [9] pattern categories and subcategories 
 

4.2.5 Architectural Pattern categories 
 
 “Different architectural patterns imply different consequences, 

even if they address the same or very similar problems” [9, p. 27] 
 

 
Buschmann et al. [9] depicts eight architectural patterns sorted in related groups: 

layers, pipes and filters, blackboard, broker, model-view-controller, presentation-abstraction-
control, microkernel, and reflection. Each architectural pattern helps to achieve a specific 
global system properties. Architectural patterns that help to support similar properties occur 
in categories. These categories are illustrated in Figure 9 and classified into four categories 
as follows. Patterns in from mud to structure category support a controlled decomposition of 
an overall system task into cooperating subtasks. Distributed systems ensure the complete 
infrastructure for distributed applications. Patterns from interactive systems relate to 
structures with interaction between humans and the system. Finally, adaptable systems 
support extension and their adaptation to evolving technology of software applications. Some 
of these patterns belong to more than one problem category. Pipes and filters, for example, 
can be seen as a pattern to deal with decomposition of a system, and as a pattern to ensure 
distribution aspects, eventually both. 
 

4.2.6 Summary and remarks 
 

Reuse provides with already gained quality and sometimes even labour savings 
through architectural reuse in the notion of patterns. “The most appropriate style for a system 
depends primarily on its quality requirements” [7, p.37]. The problem is to evaluate it along 



 The role of quality requirements in software architecture design  
 

  

33 

the alternatives to discover which one of them applies best to the requirements provided. 
Pattern, or a combination of patterns have a tendency to repeat in similar types of 
applications. That is why it is also worth to look at other software applications which had had 
similar requirements. 

The relative importance of the various quality attributes depends on the nature of the 
intended system. This paper examines the quality attributes of the ISO/IEC 9126 [20] quality 
model for quality attributes that are of particular interest to architectural patterns discussed by 
Buschmann et al. in [9]. Quality attributes should be considered during all phases: design, 
implementation, and deployment. Not all of them presented in [20] can be addressed by the 
architectural design. These are mostly developer-oriented quality attributes due to the fact 
that it can not be measured how architectural patterns influence e.g. usability or 
attractiveness. It will be clearly stated when and why an architectural pattern has a passive 
influence on quality attribute(s).  

Architectural patterns allow to reason about the high-level design of a system before it 
is implemented. As they are applied early in the design activity, they represent the first 
approach in achieving system’s quality requirements via architectural means. The choice of 
an architectural pattern depends primary on the quality attributes that are to cover: “Another 
objective of patterns is to build software systems with predictable non-functional properties” 
[9, p. 392]. They started becoming an important approach to sharing design knowledge by 
sharing an architecture description that favours or hinders certain quality attributes. 

Mapping quality attributes to architectural patterns is not an easy task and there is no 
automated way to do this. The solution is to have quality attributes as an input, and as output 
get a software architecture based on architectural patterns that fulfil quality requirements. 
This results in an architectural patterns as a method for achieving software quality. This 
should relatively bridge the gap from the quality requirements to software architecture 
design. 

The purpose of software architecture design is to create a system that meets its 
functional and quality requirements. The structure the architecture of is much related to what 
that system has to do. This is the reason why systems with similar requirements have also a 
common software architecture. This leads to reuse the existing, well-proven design 
knowledge, and what is important from the point of this thesis: 

• document existing software architecture experience to common design problems, 
• use similar specification of quality requirements – which structures and to what 

degrees cover quality attributes. 
  
 “The earlier in the life cycle reuse is applied,  

the greater benefit that can be achieved” [2] 
 

 
Reuse is a great “tool”  for systems with similar requirements, useful to shape patterns, that 
impacts software architecture design in terms of addressing quality requirements. The chosen 
topology of components and their relationships (chosen architectural pattern) must conform 
to those requirements, not the other way around. Therefore, a classification of architectural 
patterns should be based on the quality attributes induced by those patterns in order to be 
useful. 
 
 “Your pattern selection should be further influenced by your 

application's non-functional requirements, such as changeability 
or reliability”  [9, p. 27] 

 

 



 The role of quality requirements in software architecture design  
 

  

34 

Design activity is about having a way of choosing suitable software architecture. 
Architectural patterns are methods of achieving quality attributes corresponding to quality 
requirements posed on the system. Different architecture patterns address various quality 
attributes and to different degrees. Therefore, the role of desired quality requirements has 
tremendous meaning because it affects the selection of the most appropriate architectural 
pattern during the design of software architecture.  
 
 

4.3 Software Architecture Evaluation 
 

4.3.1. Evaluation theory 
 

While quality models may be neglected as a tool for achieving the required levels of 
quality, there is no doubt about the importance of measuring quality by existing, systematic 
methods. Although, there are many that can be used to improve the quality of a system, this 
paper focuses on one, the most important technique, which is architecture evaluation. 
Architecture evaluation is the process of measuring or analyzing how well the architecture 
addresses quality requirements of the system. The main goal is to check whether the quality 
attributes of the system meet quality requirements, and specify those that lack. The evaluation 
improves the potential software quality of the system before it is implemented. It is 
performed when the design of the architecture is not good enough, i.e. when it does not meet 
quality requirements. The assessment results are an important feedback to the design process 
to be able to improve the architecture. A number of methods have been developed to evaluate 
quality related issues of software architecture at the design level. These methods serve 
several alternative designs or their variations. Assessment provides the tool for comparing 
and eliminating design alternatives, thus reducing the potential solution area. In consequence, 
the design after evaluation should be of higher quality because it improves design knowledge. 
Design knowledge defines documented and communication proven design solutions to 
recurring problems, i.e. patterns chosen as a best practise for existing knowledge. 

The design process may choose many solution paths. Of course, the design process 
itself runs more effectively since there are less solutions to be discovered. Concentrating on a 
system quality attributes, for example, specifies a number of paths and hence – its branches. 
Each of the required quality attributes probably needs a different solution. This increases the 
number of potential solutions to choose from. An architect should concurrently consider 
several patterns in order to select a suitable solution. However, too many design alternatives 
may cause a negative effect on the process. Hence, software architecture design should be 
combined with evaluation of its quality requirements as the most optimized tool for solution 
searching. 

Architecture evaluation allows to measure and observe the quality attributes of 
software architecture design after the design activity has been accomplished or at the 
specified level for analysis. Assessing quality is important due to the fact that the lack of 
quality is expensive, and may cause a system to be totally useless. 
 

4.3.2 Aims of assessment 
 

Bosch [7] identified three approaches to software architecture evaluation: qualitative 
assessment, quantitative assessment, theoretical maximum or minimum. The first is used to 
compare two candidate architectures, which results in an ‘boolean’ answer stating which 
architecture is more suited for investigated quality attribute (e.g. architecture A is more 
situated for performance than architecture B). The second is used where quality attributes are 



 The role of quality requirements in software architecture design  
 

  

35 

given in numbers. Quantitative metrics help to measure, if or to what degree, a system 
satisfies a quality requirement (response time, maintenance cost, transactions per time unit, 
etc.). Quantified quality assessment results can be compared to the pre-set quality goals for 
the overall quality. Quantitative interpretations could be graded, e.g. by the impact of quality 
attributes on software architecture. Grading can use a scale presenting the impact such as {-2, 
-1, 0, +1, +2} which determines respectively high negative, negative, passive, positive, and 
high positive impact of a software architecture structure on a particular quality attribute. The 
third goal is about determining the gap between present and the theoretical maximum or 
minimum level for a certain quality attribute of evaluated architecture. 
 

4.3.3 Techniques for Architectural Assessment 
 
Introduction 
 

The studied techniques for architectural assessment allow to make qualitative and 
some quantitative statements at certain level of accuracy about quality attributes at the 
software architecture level. This means that quality attributes that can be addressed by the 
architectural design can be evaluated or measured against the software architecture [7]. Of 
course, analysis applies to the system at design level and is limited to those quality attributes 
that can be verified using an architectural description. This means that not all, but many 
relevant quality attributes can be evaluated before the application will be implemented. 

This part discusses several techniques for software architecture evaluation that were 
found interesting or useful for the purpose of this research. 
 
Scenario-based assessment 
 

Bass et al. in [2] emphasizes that quality attributes have meaning only within a 
context and this led to adopt scenarios as they are a way of describing the mentioned quality 
attribute(s) context. Scenario is defined as “a brief description of a single interaction of a 
stakeholder with a system” [2, p. 192]. In other words, a scenario is an instance of a use case 
(specified set of steps performed by a user on the system). It helps to compare and contrast 
candidate architectures to validate their required quality. Using scenarios makes quality 
requirements more concrete to the architect. 

A usage scenario (used in a usage profile) focuses on the system under a typical 
usage. It can be used during the assessment of an operational quality attribute(s). A change 
scenario (used in a change profile) describes a modification or a general change to a system. 
Each scenario focuses on one quality attribute, and often several scenarios are created that 
stresses the same quality attribute, but from different perspectives. Scenarios can be used to 
evaluate quality attributes such as maintainability, changeability, etc. 

Scenario based assessment is a structured and formalized technique to assess design 
decisions. A great example of its usage provides PerOlof Bengtsson in his “Architecture-
Level Modifiability Analysis” [4]. 
 
Simulation 
 

Scenario based assessment is static in that no executable model is used. Simulation 
uses the software system’s context, its environment at a certain abstraction level to execute 
the model. The system behaviour is used to predict the software quality attributes. Prototypes 
are  similar but in the opposite of simulation they are used to execute an intended part of the 
architecture. Once, a context and a high-level software architecture implementation is 



 The role of quality requirements in software architecture design  
 

  

36 

available, scenarios can be used to evaluate relevant quality attributes. Simulation of the 
architectural design not only evaluates quality attributes, but also functional aspects of the 
design [7].  
 
Mathematical modelling 
 

Mathematical modelling is an alternative to simulation because they are both 
appropriate for dealing with operational quality attributes. Mathematical modelling allows for 
static evaluation of architectural design models. It makes make predictions about the potential 
qualities of a resulting product using a variety of metrics. Mathematical models are unique 
for each quality attribute [7]. 
 
Experience-based evaluation 
 

The liability of evaluation methods is that they provide subjective and qualitative 
assessment. Nowadays the most common way to create an architectural structure is to rely on 
objective reasoning based on previous experiences and logical argumentation. Experts 
(experienced software architects) provide their own valuable insights and suggestions that 
proved to be efficient and help to avoid bad design decisions. This approach is different from 
previously described in that the evaluation process is less explicit and formal. It is based on 
subjective factors such as intuition, feelings, and rational thinking. This kind of analysis 
process usually starts with a feeling that something does or does not fit [7]. “Good” or “bad” 
designs have a large tendency to bring negative results, but this approach should never be 
underestimated as it is still the most popular one used in industry.  

Experience-based means reuse of existing knowledge. Hence, patterns introduced in 
section 2.7 facilitate widespread reuse of software architecture from early phases in the 
development lifecycle. Patterns help to capture existing, well-proven experience and promote 
good practices in solving design problems. They are built upon collective experience of 
software architects and engineers. Best designers do not invent new solutions distinct from 
existing ones. They rather tend to look at solutions in similar projects and reuse the essence 
of the previous solutions into the new project [9]. Therefore, patterns are commonly used in 
software architecture design, not only because of the experience-based knowledge, but also 
for constructing software architectures that address certain quality requirements.  
 
Metrics 
 

A metric is a “the defined measurement method and the measurement scale” [20, p. 
20]. Software metrics are proposed not only during the architecture evaluation, but also 
during an early architectural  design. They intend to measure and assure system’s quality.  

Software quality metrics are divided into three categories: process metrics, product 
metrics, and project metrics. Process metrics present guidance how to improve development 
and maintenance of a software product. Product metrics are used for describing the 
characteristics. Project metrics specify the project characteristics and execution. 

Metrics can are used to find, measure, and monitor quality attributes that are prone to 
problems. Metrics serve quantitative interpretations such as number of transactions per time 
unit. In order to use them, software architecture has to provide an level of details. Otherwise 
there is no data to perform the measurement on. However, most of the metrics deal with the 
measurement of already implemented systems rather than based on the results of early 
development phases.  



 The role of quality requirements in software architecture design  
 

  

37 

Though, many methods and external metrics of evaluation exist in the literature, but 
they tend to focus on one quality attribute and ignore the others. Also, many software quality 
communities focus on specific quality attributes and analysis techniques. There is a 
community, for example, that focuses on software system performance software metrics. 
Again the same example by PerOlof Bengtsson [4], where he concentrates on evaluating the 
architecture modifiability characteristics. Sometimes, it is not even possible to evaluate a 
software design to understand a single quality attribute. As it was inducted in section 3.2.4, 
some of them influence each other (positive or negative impact), such as the mentioned 
modifiability and performance. Hence, even isolating quality for evaluation can be a difficult 
task. 
 
SAAM 
 

Scenario-Based Architecture Analysis Method (SAAM) [2] specifies how well an 
architectural design responds to the demands placed on it by a set of scenarios. SAAM relies 
on a description of candidate architectures that identify relevant components and connections 
and the overall system behaviour to gain a more complete understanding of them. Competing 
architectures are compared against each other using similar scenarios with assigned weights 
of their relative importance. SAAM produces a set of metrics for each scenario. These 
scenarios are evaluated by investigating which architectural elements are affected by them.  
 
The method consist of six steps: 

1. Scenario development. 
2. Architecture description. 
3. Classification of scenarios. 
4. Individual evaluation of indirect scenarios. 
5. Assessment of scenario interaction. 
6. Overall Evaluation. 

 
ATAM 
 

Architecture Trade-Off Analysis Method (ATAM) [12] developed from SAAM is a 
comprehensive way to evaluate a software architecture. It reveals how well an architecture 
satisfies particular quality attribute goals. ATAM explicitly address interactions between 
multiple quality attributes, and recognizes trade-offs between them.  It uses scenarios for that 
purpose. ATAM requires several different architectural views: dynamic, system, and the 
source view. ATAM’s specialities are: modifiability, performance, availability, and security. 
 
Bosch architecture assessment 
 

Jan Bosch in [7] proposed architecture evaluation as a part of the design process. The 
method consists of three main phases: functionality-based design, quality attribute 
assessment, and architecture transformation. This section outlines the two last phases in 
context of the architecture evaluation. The overall method description is presented in detail in 
section 4.4.2.  
Bosch identified the following techniques for assessing quality requirements:  
 

• scenario-based assessment, 
• simulation, 
• mathematical modelling, 



 The role of quality requirements in software architecture design  
 

  

38 

• experience-based evaluation. 
 
Besides these, Bosch also mentions about metrics that are concerned with quantifying various 
aspects of software. However, most metrics approaches perform measurements on 
implemented systems instead of software architecture at design level. Each technique may 
have different assessment goals: 
 

• qualitative (relative) assessment, 
• quantitative (absolute) assessment, 
• assessment of theoretical maximum or minimum. 

 
The techniques and their approaches have already been defined in detail in previous sections. 
Once, the quality attributes have been assessed, the outcomes are compared to the expected 
values in requirements specification. The goal of the quality attribute assessment is to 
evaluate the potential of a software architecture to ensure the fulfilment of its quality 
requirements. If one or more quality requirements are unsatisfied, the architecture is 
transformed to cover the missing requirements. If all estimated quality attributes are 
satisfactory, the architectural design process is completed. Bosch identified five following 
transformation methods: 
 

• imposing an architectural style, 
• imposing an architectural pattern, 
• applying a design pattern, 
• converting quality requirements into system’s functionality, 
• distributing requirements. 

 
Architecture transformations are illustrated in Figure 10 where they are distinguished by 
their scope of architecture changes and the transformation type. Transformations change the 
structure of the architecture; they affect quality attributes, but not the functionality. In 
consideration of section 3.2.4 where quality attribute relationships have been investigated, 
each transformation (so called quality attribute optimizing solution) improving one or more 
quality attributes may affect others negatively.  
 
 

 
 

Figure 10 - Architecture transformation categories 
 



 The role of quality requirements in software architecture design  
 

  

39 

4.3.4 Summary and remarks 
 
 “People often want to analyze software architectures with respect to 

quality attributes expressed using words such as maintainability, 
security, performance, reliability, and so forth” [2, p. 191]  

 

 
There are methods and external metrics to use depending on what quality attribute is 

to evaluate. An activity of analyzing a system's architecture in order to understand its quality 
attributes described by Bass et al. is called the architecture evaluation. In order to check 
whether software architecture fulfils its requirements, it needs to be assessed. It is impossible 
however, to verify explicitly if all quality attributes of the final system were addressed based 
on the design itself.  

Evaluation is about how to assess the system in terms of the quality requirements. The 
basic goal is to evaluate the potential of the candidate architectures (which ones should be 
rejected), with respect to qualities and their important during the design phase. Candidate 
architectures in this research, i.e. candidate architectural patterns will be evaluated  with 
respect to a set of desired quality attributes, and to uncover recommendations for best design 
practices.  

Architecture’s main goal is the system quality. Therefore it should be analysed and 
evaluated early, when early design decisions are taken to achieve the system’s quality 
attributes. Evaluation should be performed before the problem arise, i.e. at the very beginning 
parallel to development process.  However, studied software architecture evaluation methods 
are ought to be performed right after the design was complete [7]. 

Evaluation, done properly, will definitely lead to increased quality not matter at what 
stage of architecture design it is performed. However, quality cannot be completely assessed 
during architectural design. It only “assesses the ability of the architecture to support the 
desired qualities” [2, p. 191]. Software quality cannot be added to the architecture – design 
process should constantly take into account its importance. Problems found early are easier 
and less expensive to correct.  

When evaluating quality requirements, a general purpose evaluation technique can not 
be used for all quality attributes. Different quality attributes must be evaluated using different 
techniques since, as it was presented, techniques tend to specialise on revealing weaknesses 
of one, or small number of attributes. 

One of the greatest problems of software architecture design is the lack of quantitative 
methods for evaluating quality requirements of proposed designs. Nevertheless, architecture 
evaluations help to detect and hence, reduce the risk of having a system with insufficient 
quality. The measurement of quality attributes depicts whether quality requirements will be 
fulfilled by the architecture or not. 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

40 

 
4.4 Quality requirement-oriented design method 

 
4.4.1 Introduction 

 
In recent years, software architecture design and its importance is widely recognized 

in software engineering. As indicated earlier, a critical issue during the design and 
construction of a software system is to fulfil its requirements. Software requirements are 
divided into functional and quality requirements (section 2.6). A traditional approach is to 
develop a software architecture that results from a set of design activities that provides 
desired functionality. In general, functional requirements determine what the system does. 
The design activity should however address both of these requirements. A key task that is a 
difficult challenge for architects is the transformation from quality requirements into software 
architecture. Despite little progress, this are of the design remains relatively immature. 

While the functionality of a system is handled by a number of well-proven 
development methodologies, the quality objectives still require effective support. Quality 
requirements in current practice are covered by ad hoc decisions that often rely on 
experienced-based evaluation (section 4.3.3) of architects. This gap intensifies a need for 
tools and techniques that support a systematic achievement of quality requirements. Since 
their significant importance is proved in many literature sources (section 4.1), the design 
should handle them in the first place. This part proposes an approach that covers quality-
related issues in software architecture design at first.  

 
4.4.2 Bosch design method in context 

 
Quality Attribute-oriented Software ARchitecture design method (QASAR) [7] has 

already been mentioned in this paper among other evaluation techniques since it enables the 
software architecture assessment. However, it is also a mature design method with 
incorporated practise for addressing quality requirements that provided inspiration for the 
proposed method. Hence, it is presented here.  
QASAR consist of three main steps:  

• functional-oriented design,  
• quality attribute assessment, 
• architecture transformation.  

 
It starts with software architecture design based on functional requirements. During this step 
quality requirements do not receive any particular attention. The next step evaluates quality 
attributes in the system using a number of scenario profiles either complete or selected. The 
transformation, being the last step, is performed when the architecture is not good enough – 
does not meet quality requirements. Transformation, i.e. modification and evaluation, is 
conducted iteratively with respect to the quality requirements until the evaluation shows that 
they are satisfactory fulfilled by the proposed architecture. The method do not focus on a 
single quality attribute, but provides an instrument for the assessment and reasoning about a 
set of desired attributed. The main disadvantage is that the method deals with functional 
requirements at first. Large amount of resources have been used without verifying whether 
the architecture fulfils quality requirements. Figure 11 presents the QASAR activities.   

 



 The role of quality requirements in software architecture design  
 

  

41 

 
 

Figure 11 - Quality Attribute-oriented Software ARchitecture design method 
 

As it was indicated in Chapter Two, several architecture design methods have been 
proposed. Examples of these that are discussed in this thesis include the “4+1” view model 
[22], Hofmeister et al. design method [16], Reference Model for Open Distributed Processing 
[19] and Bosch design method [7]. The methods differ on where they put their focus during 
the architectural design. Many of these pay little attention to support explicitly the 
development towards the quality requirements. These design methods vary with the number 
of contained activities, notations, design aims and objectives, etc. However, all of them have 
one thing in common, i.e. requirements specification is used on input and a software 
architecture is given on output. This means that architectural design can be viewed as a 
function [7]. Despite this fact, design methods are not an automated process and much effort 
is involved.  

Bosch indicates that several other authors in their conventional object-oriented design 
methods pay little attention to quality requirements and the architecture focuses on achieving 
the desired functionality of a system. To sum up, there is a lack in software architecture 
design methods that which explicitly support the development towards quality requirements. 
Hence, this quality requirement-oriented design method is proposed. 

  
4.4.3 Method activities 

 
The introduced model is a quality requirement-oriented software architecture design 

method. It iteratively assesses the degree up to which the provided architecture supports the 
quality requirements. There are four activities, i.e. quality requirements-oriented design, 
quality requirements evaluation, functional requirement-oriented design and functional 
requirements evaluation. The proposed approach uses two artefacts, i.e. requirements 
specification and the software architecture. It is assumed that the requirements specification 
is divided into functional and quality requirements, so that each design orientation uses 
corresponding requirements category. Figure 12 illustrates the proposed design method. 

 



 The role of quality requirements in software architecture design  
 

  

42 

 
 

Figure 12 - Quality requirement-oriented design method 
 

The objective of this model is to design a software architecture that targets both 
requirements types of a system. In opposite QASAR, this design process starts with a design 
of a preliminary version of the software architecture based on quality requirements specified 
in requirements specification. Then, the software architecture is evaluated in terms of 
functional requirements that were not considered in the previous step. The estimates are 
compared to the expected results from the requirements specification. If these indicate that 
results are not met by the current architecture, the functional requirement-oriented design is 
performed until the architecture fulfils its functional requirements. Quality requirements are 
not considered at this stage. Then, the functionality design is further evaluated, but this time 
the quality requirements are the subject of assessment. If the outcomes determine that the 
architecture does not met its required quality requirements, the design towards the missing 
quality requirements starts iteratively again. Otherwise, the software architecture design is 
considered as completed. Since the last evaluation considers quality requirements, this 
ensures that every functional modification of the architecture is evaluated later with respect to 
the quality requirements. The proposed design method differs also as the QASAR 
architecture transformation is not a separate activity, but a part of the quality requirement-
oriented design.  

 
4.4.4 Method example 
 

The following example is given in order to illustrate the intention and usability of the 
proposed method. As it is proved in Chapter Three, quality requirements are crucial to a 
software system. Therefore, if possible they should be addressed as early as possible by the 
design activities – in software architecture design. This research discusses the concept of the 
high-level design before committing into detailed design. Dealing with quality requirements 
at the very beginning helps to fulfil several quality attributes, for example maintainability. 
Maintainability is recognized as the ease to modify, improve, correct, replace or adapt to a 
changed environment a software system or component. The level of maintainability depends 
how strong components are connected with each other. Encapsulation of these components is 
a method of achieving maintainability as they include modularization strategies that reduce 



 The role of quality requirements in software architecture design  
 

  

43 

the effort of modifying the system. The idea of the proposed method is to deal with the 
desired quality attributes of a system at first, i.e. before functional requirements are 
addressed. Decomposing the system into a certain number of components addresses the 
quality requirements regarding maintainability, before taking into account the functional 
requirements. Afterwards, the functionality of a system can be placed on these components 
that fulfil the desired quality attribute which in this example is maintainability. However, a 
number of quality attributes can be situated before the functional requirements are handled 
such as: 

• efficiency – “volume  and complexity of intercomponent communication and 
coordination, especially if the components are physically distributed processes” [2, p. 
32]),  

• security and safety – determine a component for system authorization, error checking, 
data encryption, etc.),  

• reliability – component(s) replication, implies redundancy strategies),  
• portability – similarly to maintainability – encapsulate a component that can be 

replaced in order to migrate to a different environment), 
• flexibility – making the system configurable 
• fault tolerance – component(s) for exception handling.  

 
In general, these quality requirements strategies involve of ensuring the existence or a 
specified order (decomposition) of one or more components (mechanisms) that fulfil desired 
attributes of a system. It is also worth to mention that all of these abstract from the system 
functional requirements. Therefore, the proposed method find its usage in software 
architecture design activities.  
 

4.4.5 Benefits and liabilities 
 

This section serves a rationale on benefits and liabilities of both Bosch and proposed 
design methods regarding relevant architectural issues. 

Bosch himself describes the two main liabilities of his approach. These liabilities also 
concern the proposed approach. They are listed to present similarities with Bosch method and 
to realize the required model rework. Firstly, not all quality attributes can be evaluated until 
the system is put in operation. Secondly, if these attributes (categorised as operational) are 
measured when the design is completed, much rework has to be done in order to include the 
modifications. Incorporating these modifications result generally in total resource usage. 
From personal findings, the changes may also not bring expected outcomes, and even 
decrease the level of achieving quality attributes. As it was indicated in section 3.2.4, 
attributes may influence each other positively or negatively. Though, implementing 
modifications to a quality attribute may hinder others. Even if the fulfilment of an attribute is 
achieved, such procedure may result in total lower software quality.  

Moreover, Bosch indicates that having a functionality-based design may result in 
needless design efforts as the system was directed towards functional requirements and lacks 
in quality requirements. Bosch method is more modification-prone since in most cases the 
first iteration requires transformation. Therefore, the proposed method benefits from the start, 
even when there is no conception of exactly which functional requirements should be 
supported and in which way. The early quality requirements-oriented design allows for the 
achievement of global quality attributes that constrain the architecture on the highest 
abstraction level. This design in the first step ought to decompose the system into top-level 
components similarly to Bosch architectural styles [7] and Buschmann et al. [9] architectural 
patterns. These styles and patterns are used to deal with a structure of an architecture from the 



 The role of quality requirements in software architecture design  
 

  

44 

scratch, when the fundamental decisions are taken. Since they specify the primary 
organization scheme for an software architecture, the quality requirements can already be 
addressed, even before the functionality. This is significant because it allows to: 
a) save much effort on and reduce the number of quality requirement evaluations,  
b) avoid modifications caused by the lack of quality requirements during the functionality-
oriented design, especially during the first iteration. 

QASAR does not consider a situation when the architectural transformation affects 
functional requirements. Bosch says that the functionality is stable so that the idea behind the 
transformation is that a system has exact functions before and after a transformation. The 
differences occur only in quality properties of an architecture. However, incorporating quality 
requirements may influence negatively the specification of functional requirements. Also, 
functional requirements may have to be sacrificed in order to meet the quality requirements, 
especially when these quality requirements impact the whole architecture. Even though a 
quality attribute estimation resulted in a transformation required to fulfil the missing quality 
requirements, QASAR considers the functional requirements to be covered. The proposed 
approach takes into account such a possibility. 

The proposed approach also considers an activity which evaluates the functionality-
oriented design. It estimates whether and to what extent the functional requirements are 
covered, i.e. are the required system functions, services available. Such procedure allows for 
monitoring the development progress and handles the situation of functional requirements 
variability. Moreover, if a close collaboration between the two design types is considered, 
functional requirement-oriented design may depend on quality requirement-oriented design. 
This means the iterations of functional requirement-oriented may include a design that 
addresses a part of the functionality. Then, this activity is intermitted to fulfil the quality 
requirements of the obtained functionality part and to ensure some quality-related 
background issues for further functionality-based design.  

The model also benefits in having similar development progress towards both types of 
requirements. Bosch concentrating on functionality leaves quality requirements completely 
aside. The proposed method balances more or less the achievement of both requirements at a 
time. This may help to control the progress and to improve the workflow understanding. 
 

4.4.6 Summary and remarks 
 

The challenge in software architecture design is to develop a system that fulfils its 
requirements. Traditionally, design methods concentrate on the desired functionality which 
alone is not sufficient to achieve the right quality level. It is therefore necessary to get an 
early quality requirements achievement of the resulting software. Bosch’s approach is a good 
example of a design method that covers quality related issues, but the functional requirements 
are considered at first. Maybe an approach of dealing with quality requirements from the very 
beginning would in consequence result in higher software quality levels compared to the 
resources used in architectural design. The proposed model serves such a solution.  

It is not the subject of the presented model to assess whether the existing design 
methods are better or worse, but to consider a possible software architecture design guided at 
first towards quality requirements. As the proposed model attempts to bring quality 
requirements closer to software architecture, it serves a solution to the research investigated 
in this thesis. 

The proposed model activities are left to the architect to be conducted in a fashion that 
seems appropriate. It only emphasizes the order of design activities which contribute to the 
fulfilment requirements categories. The main challenge facing the proposed model was to 



 The role of quality requirements in software architecture design  
 

  

45 

find an optimal balance among typical design activities in order to make a software 
architecture address at best its quality requirements. 

The proposed design method similarly to QASAR can be seen as a function. It takes a 
requirements specification as an argument and results in a software architecture. Neither the 
proposed or QASAR design method is an automated process. They both require much efforts 
and creativity from the architects. To summarise, there is a lack in support for design towards 
quality requirements. The following chapters present the recommendation framework, i.e. an 
automated approach to fulfilling quality requirement via architectural means. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

  

46 

 
 
 

Chapter Five – Empirical approach  
to Recommendation Framework preparation 

 
 
 

5.1 Study design  
 
5.1.1 Empirical research 

 
This chapter focuses the methodology used in this research. Since one of this thesis 

objectives is to improve the way that quality requirements are handled in software 
architecture design, an empirical method seems to be the a suitable solution. It is chosen for 
achieving this goal due to the fact that it reveals how others deal with such problem in 
practice. To gain more knowledge from society, there have been developed a variety of 
methods of that enable information collection and analysis. There are two commonly used 
aims of assessment described in section 2.5.2. differentiated on the research result type: 
qualitative and quantitative. Quantitative assessment requires a construction of a set of 
numerical information on large groups of people through questions with a suitable scale for 
data measurement. The subject matter of a research and its expected results influence the 
method chosen for the assessment. Particular methods are often associated with particular 
research types. However, all the techniques do not support an rational scale. Hence, their 
results remain subjective. The background knowledge presented in Chapter Two – Four is 
introduced according to a number of literature sources that investigated the role of quality 
requirements in software architecture design and related issues. However, the research in this 
thesis is also conducted in an empirical manner as it uses questionnaire for observing and 
gaining required data for the following chapters of this research.  
 
This research consists of seven main steps listed as follows: 
 

1. Identify the research problem and purpose. 
2. Design a questionnaire.  
3. Collect the research data. 
4. Analyze and interpret the results; make conclusions. 
5. Specify recommendation framework concepts; indicate the usage steps. 
6. Present a usage example. 
7. Verify the validity of the proposed solution. 

 
Chapter One determined in detail the first step of this research. Step two is described in 
section 5.1.3, whereas analysis and results presented in section 5.2 are responsible for the 
fourth step. The recommendation framework, its relevant context, and a usage model are 
pinpointed in Chapter Six. The last two research steps are presented in Chapter Seven, 
where a practical usage example and its further validation are described. 
Moreover, Chapter Eight summarizes the research outcomes and draws conclusions. A 
possible future work is listed in terms of the given results. 
 



 The role of quality requirements in software architecture design  
 

  

47 

5.1.2 Aims and objectives 
 

The study presented in this thesis is carried out to gather the required data for the 
proposed recommendation framework. There are two main literature concepts used by the 
framework: architectural patterns and quality attributes. Although architectural patterns are 
described by Buschmann et al. [9] and some of these by Bosch [7] is such way that their 
influence on several quality attributes is investigated, but it does not provide enough data to 
build the framework. Firstly, the patterns impact on quality attributes is presented in a 
qualitative way. Therefore, the relationships between them could not be compared equally. 
This makes the impact immeasurable among the patterns and even among the attributes. 
Secondly, not all of the patterns pinpoint the influence on the same attributes. The literature 
investigates certain quality attributes for each of the patterns leaving others unmentioned. 
Thirdly, neither Bosch [7] nor Buschmann et al. [9] use the same quality model (ISO/IEC 
9126 [20]) for specifying quality attributes. Though, a number of translations or assumptions 
had to be made. These reasons prove why the qualitative data from the literature cannot be 
used by the framework.  

Questionnaires are commonly used since they allow to reach a large number of people 
who could be interviewed. In the case of this research, it is achieved via e-mail since sending 
out a questionnaire is an easy way of finding persons that would potentially participate. 
Having a large sample of people involved and the results generalization ensure the 
questionnaire’s validity. The results rely on experience-based evaluation (introduced in 
section 2.5.3) of the interviewed persons. Questionnaire outcomes are easily exposed for 
analysis as they contain fixed questions that provide quantitative answers. This is why a 
empirical questionnaire technique is chosen for gathering the required data for the proposed 
recommendation framework. It ensures that answers coming from different background and 
approach of interviewees, and their further generalization enable the frameworks general 
usage applicability and validity. 

To sum up, the objective of this study is to collect and prepare the data required to 
build the recommendation framework by examining students and experts’ viewpoints and 
priorities with respect to their knowledge and experience. As an instrument for examining 
interviewed persons’ viewpoints and priorities a questionnaire with quantitative questions is 
prepared that concerns the impact of each architectural pattern introduced by Buschmann et 
al. [9] on ISO/IEC 9126 [20] quality attributes. 
 

5.1.3 Questionnaire design 
 

This section describes the outline of the questionnaire. The designed questionnaire 
consist of three parts. Part A , right after a sort questionnaire introduction lists the benefits of 
answering the questions in order to encourage people in participation. By using a 
questionnaire technique, additional information regarding interviewees’ current knowledge 
can be gained. Hence, the second part (Part B) serves a pre-study – an introduction to the 
interviewed person. It collects background information about whether he/she has any, or in 
what degree, knowledge and previous experience in the area of software architecture, quality 
requirements, and architectural patterns. Part B was added to the questionnaire due to the 
threats to the validity and reliability of the study. In order to avoid that, if someone marks the 
answers that prove his/hers unawareness to the subject, these answers will not be taken into 
account in the final study results.  

Part C starts with a short introduction followed by eight questions. Each of these 
main questions contain six subquestions. The introduction of Part C serves a reminder of two 
main concepts used in this part, i.e. architectural patterns by Buschmann et al. [9] and quality 



 The role of quality requirements in software architecture design  
 

  

48 

attributes categorised in ISO/IEC 9126 [20]. This procedure helps to clarify what the 
questions are about so that every interviewed person shares the same meaning and 
understands them properly without any ambiguities. It also provided a pre-stated taxonomy 
for the used terms. These “reminder” materials were prepared due to the fact that before the 
questionnaire was really distributed to respondents, a pilot study was carried out to verify 
whether questions used in the final version of the questionnaire will be capable of being 
clearly answered. This treatment prepared the questions to be more understandable as an 
interviewed person can take a look the definitions before an answer is given. 

Part C contains eight main questions due to the fact that Buschmann et al. [9] 
classified eight patterns as architectural. They were chosen as software architecture 
descriptions in this research for reasons which were presented in section 4.2.2 and 4.2.3. The 
first of total six subquestions in each of the eight architectural patterns questions is concerned 
with an interviewed person’s knowledge about the pattern. A five-level scale is given to 
measure the degree how a recipient is familiar with a particular pattern. The following five 
subquestions contain five ISO/IEC 9126 [20] characteristics (except functionality) and their 
equivalent subcharacteristics. Similarly to the first subquestion, the remaining subquestions 
are represented by a five-level scale, although this one investigates how every architectural 
pattern impacts each of the ISO/IEC 9126 [20] quality model characteristics. A legend for 
this purpose is given in the introduction to Part C and it indicates the specification of 
possible choices. 

A scale with greater number of possible options would increase the study validity and 
in consequence the recommendation framework’s correctness in finding the most suitable 
architectural pattern. However, a five-level scale seemed to be the most appropriate as it 
depicts reasonable dependencies between quality attributes concerning an architectural 
pattern. The more answers a question has, the more difficult it is. A possible wider scope of 
choices could have been prepared, but it would discourage participants and increase 
unnecessarily the difficulty of the questionnaire, and therefore making its final results useless 
for the research. Nevertheless, it limits the opportunity for more precise statistical analysis. 
 
See the Appendix 2 for the attached questionnaire. 
 

5.1.4 Summary and remarks 
 

A research methodology is chosen approximately for the purpose of this thesis. This 
study addresses empirically a few research question stated in the Chapter One. A 
questionnaire technique chosen for the reasons described in the introduction of this chapter 
helps to collect all the data required for further analysis and considerations. In general, it 
gathers the information on how the idea of quality requirements is recognized in practise. 
Problems are identified by observing and measuring how organizations develop software 
with respect to quality requirements. The domain of this research investigates the concepts 
related to: quality requirements, quality attributes, software architecture, architectural design 
and assessment, and patterns. The results may in consequence help to improve the way these 
concerns are handled in practical software engineering.  

A questionnaire is prepared as the data collection instrument as it is the easiest way a 
large number of participants with different background experience can be gathered and 
brought under analysis. This will help in research results generalization as they come from 
different sources, i.e. from people with different approaches towards dealing with quality 
related issues in software architecture design. 



 The role of quality requirements in software architecture design  
 

  

49 

Although some knowledge is mandatory for the validity of the results, the 
questionnaire itself is designed as easy as possible so that every interviewed person is willing 
to answer the questions and generally finds it simple to handle.  

The preparation for the questionnaire is minimal. It depends mainly on booking time 
with participants and preparing printing materials (questionnaires, ISO/IEC 9126 [20] quality 
attributes glossary, and basic Buschmann et al. [9] architectural patterns description, given as 
reminders). The material (originally prepared in English) was not translated into different 
languages, although interviewed persons have different nationalities (Polish, Swedish, and 
others), and some of them may be unable to understand the questionnaire and the provided 
“reminder” part completely. 

Conducting an empirical research based on personal experiences and general 
observations brings threats to the results validity. Despite the fact tat a number of preventing 
steps are taken to decrease them, they are almost impossible to be completely avoided. 
Various means have been applied in order to increase the questionnaire’s reliability for the 
research. These methods are refined as a result of feedback from the pilot material given to 
several students of the fifth year of computer science (software engineering specialization) at 
the Wroclaw University of Technology. In is not the intention of this section to depict the 
validity threats since the following chapter describes not only the potential ones, but also 
those that could not have been avoided during the design of the study.  
 
 

5.2 Analysis and results 
 
5.2.1 Introduction 

 
This part presents the research results and findings. It was aimed to understand the 

role of quality requirements in software architecture structures. Data was collected by means 
of a quantitative questionnaire. The participants were given as much time as they need to fill 
out and return the questionnaire with answers. The questionnaire will be analysed in order to 
present statistical outcomes. Finally, important findings during the study will be described. 
 

5.2.2 Research domain 
 
The research presented in this thesis was carried out among two groups of interviewed 
persons. The questionnaire was given to: 
 

• students of the fifth (last) year of computer science, software engineering 
specialization at the Wroclaw University of Technology, 

• Experts from industry with background knowledge about practical software 
engineering and application design. 

 
The age of the target groups of people is not relevant. The knowledge and experience are the 
significant factors that matter. Since the questionnaire respondents have significant approach 
differences, their results are obvious to differ from each other. Students have academic 
knowledge on architectural patterns gained from the mandatory courses attended at the 
University. Hence, their knowledge is rather theoretical since the lack of practical industry 
experience. Different from students, the group of experts who participated in the research 
consists of people working in large industry companies:  
 
 



 The role of quality requirements in software architecture design  
 

  

50 

� Advanced Digital Broadcast (www.adbglobal.com),  
� Comarch (www.comarch.com),  
� Osmosys Technologies (www.osmosys.tv),  
� Siemens (www.siemens.pl),  
� Silicon & Software Systems (www.s3group.com),  
� SMTSoftware (www.smtsoftware.com),  
� TETA (www.teta.com.pl). 

 
Their answers were based on experience gained during practical large-scale projects 
development. In consequence, their answers should ensure the final results reliability. 
However, investigating students should also bring positive results as they are familiar with 
information from the literature. Nevertheless, the questionnaire outcomes of these two 
interviewed groups are be presented separately and in total. Hence, interesting conclusions 
are described. 

High sampling is important for validity and allows for results generalization. The 
sample size is 13 experts and 38 students, giving in total 51 questionnaires that were 
collected, but 43 in total were used for measurement as the Part B proved that the 
interviewed persons were not reliable to take them into account. 
 

5.2.3 Questionnaire results 
 

Before a statistical analysis is given, this section presents a general discussion on the 
questionnaire results. 

Some of the respondents did not answer all the questions provided. These 
questionnaires are not disqualified to keep as many data sources as possible. Missing answers 
are not taken into account; only complete cases are used as the basis for result analysis. 

In many cases students tend to answer in the scope of [-1, 0, +1] close to zero which 
corresponds to passive impact. These results suggest as if students are either not sure about 
the answer (lack of knowledge) or the answers are “protectively” marked. This is observed 
not only when the question about familiarity with a pattern proved that their knowledge here 
is rather weak, but also when an option corresponding to high familiarity is chosen. On the 
other hand, experts are not as “shy” as students. Their choices tend to be rather “courageous” 
as they often mark answers from the whole available scope [-2, -1, 0, +1, +2]. This may 
slightly suggest that experts were surer in their choices, and their answers should be more 
correct compared to students.  
 

5.2.4 Data analysis 
 

This section investigates the questionnaire results. The results involve subjects that 
their knowledge proved applicability for the research. Collected data was analyzed through 
statistical analysis and involved some interpretations. 
 
� Part B results: 
 
Questions one and two proved that all interviewed persons taken into account for analysis 
participated in software architecture design. Though, several questionnaires that were 
rejected indicated that students have not taken part of an architectural design yet. Table 4 
depicts the total number of subjects with their average of attended designs. This points the 
first difference between the interviewed groups, where students and experts differ from each 
other with the number of architectural designs. 



 The role of quality requirements in software architecture design  
 

  

51 

 
Subject Participants Number of designs Designs per subject 

Students 31 74 2.39 
Experts 12 104 8.67 
Total 43 178 4.14 

 
Table 4 - Participation in software architecture designs 

 
Also, respondents were asked to grade their knowledge about quality requirements, and 
patterns in general. While the previous table served concrete values for measuring the level of 
experience, Table 5 calculates a subjective assessment of respondents knowledge about the 
basic terms used further in the questionnaire. Nevertheless, it also proves the predominance 
of experts in this research.  

 
Subject QRs Patterns 

Students 5.29 6.74 
Experts 7.33 8.17 
Total 5.86 7.14 

 
Table 5 - Average knowledge of quality requirements and patterns 

 
Part B was prepared to verify whether interviewed persons have some background 

knowledge to use their answers as a source of information. Section x. indicated that several 
respondents were excluded for not being applicable for this research. Moreover, the 
comparison of students and expert’s values indicate the differences between academic and 
industrial knowledge in the area of quality requirements and software architecture. However, 
these results are subjective interpretations. Moreover, the student group consists of total 31 
interviewed persons. High sampling allows for results generalization and therefore answers 
given by students in Part C will also be used for the purpose of this research. 
 
� Part C results: 
 

Respondents were asked to grade their familiarity with each architectural pattern 
before the answers concerning the quality attributes impact were stated. In some cases, the 
relationships between a pattern and quality attributes were identified, but the familiarity 
question was left unmarked. Table 6 presents the summary results for all architectural 
patterns, where they are sorted with respect to their total familiarity. Whereas a green box 
indicates the highest value, the lowest value within a group of subjects is represented in 
yellow. High accuracy of results is expected among patterns with high familiarity level as 
they are commonly known and recognized by respondents. Familiarity results also determine 
pattern usage popularity. Hence, these results may be used as answers for questions about 
usability since popularity as general applicability suggests pattern usability.  

The pattern familiarity may be multiplied by the values of the relationship between a 
certain pattern and its quality attributes relationships values. Such procedure ought to 
increase the results reliability since dominant values are given by subjects with high 
familiarity. For example, a subject’s familiarity with a layered pattern is ‘4’ corresponding to 
‘good’ knowledge. Then, each relationship value of every quality attribute in multiplied by 
‘4’ so that if someone has much knowledge about a pattern, his answers will be significant. 
Nevertheless, this procedure was not performed as it would bring even more subjective 
outcomes.  



 The role of quality requirements in software architecture design  
 

  

52 

 
Pattern Students Experts Total 

MVC 4.36 3.89 4.23 
Layers 4.13 4.15 4.14 
Pipes and filters 3.85 3.93 3.88 
Microkernel 3.35 4.20 3.82 
PAC 3.74 3.67 3.71 
Broker 3.41 3.72 3.52 
Blackboard 3.22 3.76 3.46 
Reflection 2.38 3.45 2.94 

 
Table 6 - Subjects familiarity with architectural patters 

 
The following Table 8 presents the final research results, i.e. data that is further used by the 
recommendation framework. These results are a total average of students and experts 
answers. Relationships between architectural patterns and quality attributes were calculated 
as explained in the following example: 
 
36 persons identified the relationship of a layered architectural pattern and maturity  quality 
attribute. These answers are:  
 

Answer Subjects per answer 
-2 6 
-1 12 
0 12 

+1 5 
+2 1 

 = 36 persons in total 

 

Layers[Maturity]  ≈∗+∗+∗+∗+∗=
36

12  51  120  12(-1)  6(-2)
 – 0.47 

 
Naturally, provided answers were within the scope of 22 ≤≤− x , where x is the given 
answer. Although, these results could have been divided by 2 for facilitation, the original 
values are presented since it enables a comparison to the answers proposed in the 
questionnaire. 
 

5.2.5 Validity and threats  
 

Limitations determine potential weaknesses of this research and decrease results 
validity. These are as follows: 
 

• Small sample size: 
o Lack of practical knowledge from the student community. 
o Small number of experts involved. 

• Small assessment scale due to the number of patterns (8) and attributes (16).  
Hence, 48 assessments had to be conducted. 
In this section, threats to the validity of the study are presented together with steps 

taken to avoid them. During an empirical research the concern of validity and threats is of 



 The role of quality requirements in software architecture design  
 

  

53 

high importance and needs proper consideration. In order to avoid threats in the research 
performed in this thesis, the questionnaire itself was carefully designed thorough precise 
examination towards the prior objectives for realization of the study. However, precise 
questionnaire design does not guarantee that all of them will be omitted. Some of them 
remained, but their scope was reduced due to several efforts described below. 

Construct validity, concerned with the design of questionnaire, targets in the lack of 
exact perception shared among respondents of the terms and definitions used in the questions. 
For example, as stated in section 2.3.1 quality requirements are often referred as non-
functional requirements, non-behavioural requirements, system properties or constrains. 
Quality attributes are also recognized under different terms such as qualities, “-ilities”, 
characteristics, or factors. Moreover, patterns categorised as architectural [9] may not be 
recognized between other types of patterns. This is why descriptions of quality attributes 
from ISO/IEC 9126 [20] and architectural patterns from Buschmann et al. [9] were included 
with the questionnaire as an attempt of avoiding this construct validity. 

The results can be exposed for generalization as they come from different groups of 
interviewed people. Students provide the academic knowledge, whereas the experts share 
their industrial, practical knowledge and experience. These two approaches in the subjected 
population of data balance the input data so that the total results should be balanced and 
therefore – reliable. 

As it was indicated in section 5.2.3 there were cases when questions were left 
unanswered. Participants were told not to mark answers that they have little idea about. This 
procedure prevents to some extent the fabrication of data due to the fact that if a subject is not 
reliable in certain questions, these will not be taken into account for analysis. The unmarked 
questions were not used in final results and their presence had no influence the total validity 
of the research. However, unanswered fields decrease the particular question’s validity since 
a smaller part of the population was taken into account during generalization.  
 

5.3 Conclusions and findings 
 
The empirical research was carried out to collect the data for the recommendation 

framework described in detail in the following Chapter Six. The questionnaire in this thesis 
considered two types of people involved: students and experts. Their answers were analyzed 
in context of both, academia and industry viewpoints. Table x. illustrates the final and 
expected research results that provide the required data for the proposed framework.  
 Experts representing the industry viewpoint shared their experience from 7 large 
companies, where the number of employees goes beyond 350 (in case of Advanced Digital 
Broadcast). Size is relevant to the study since it determines the scale of company’s designs. 
Also, the number of employees bears on the elaborated and years of experience, and therefore 
– position in industry. In consequence, the larger company is, the more reliable information 
should it provide. 

Students representing the academic viewpoint have little practical experience and 
shared their knowledge gathered from courses they attended at university. Nevertheless, both 
perspectives answers were used to prepare the final results through statistical analyses, which 
involved some interpretations. These were determined by threats to the study validity caused 
in general by human estimations. These decrease the accuracy of measured results and 
therefore the precision of the recommendation framework to identify the most suitable 
architectural pattern for a set of quality attributes in question.  



 The role of quality requirements in software architecture design  
 

  

54 

 
 
 
 
 
 
 
 
 
 

 Reliability Usability 
 

Maintainability Efficiency Portability 

  M
at

ur
ity

 
  F

au
lt 

to
le

ra
nc

e 
  R

ec
ov

er
ab

ili
ty

 
  U

nd
er

st
an

da
bi

lit
y 

  L
ea

rn
ab

ili
ty

 
  O

pe
ra

bi
lit

y 

 A
na

ly
sa

bi
lit

y 
 

  C
ha

ng
ea

bi
lit

y 
  S

ta
bi

lit
y 

  T
es

ta
bi

lit
y 

  T
im

e 
be

ha
vi

ou
r 

  R
es

ou
rc

e 
ut

ili
sa

tio
n 

 A
da

pt
ab

ili
ty

 
  In

st
al

la
bi

lit
y 

  C
o-

ex
is

te
nc

e 
  R

ep
la

ce
ab

ili
ty

 

Layers -0.47 -0.54 -0.62 1.58 1.47 1.24 1.80 1.84 1.63 1.72 -1.67 -1.75 1.64 1.79 1.72 1.65 
Pipes & Filters -1.23 -1.60 0.81 -0.20 -0.21 -0.26 1.75 1.73 1.55 1.71 1.84 1.83 1.47 1.35 1.41 1.50 

Blackboard 1.01 1.22 0.69 -0.34 -0.26 -0.31 0.61 -0.24 0.52 0.67 0.06 -0.12 -1.33 -1.33 -1.28 -1.04 
Broker  -1.39 -1.45 -1.74 0.12 0.33 0.49 1.30 1.39 1.39 1.25 -0.52 -0.29 1.51 1.42 1.56 1.69 

MVC  0.86 0.85 1.06 1.81 1.75 1.68 1.23 1.16 1.20 1.37 -1.49 -1.34 -0.66 -0.97 -0.58 -0.43 
PAC 0.69 1.13 0.87 1.26 1.19 1.22 0.99 1.03 1.25 1.08 0.10 0.16 -1.13 -1.24 -1.07 -0.60 

Microkernel  1.36 1.43 1.18 -1.50 -1.41 -1.38 0.52 0.29 0.47 0.51 1.27 1.13 1.42 1.67 1.58 1.59 
Reflection 0.30 -0.26 -0.47 -1.73 -1.54 -1.73 -0.42 -0.40 0.36 -0.37 -0.53 -1.07 1.38 1.41 1.23 1.17 

 
Table 7 - Empirical research data for the Recommendation Framework



 The role of quality requirements in software architecture design  
 

 

55 

 
 
 

Chapter Six – Recommendation Framework 
 
 
 

6.1 Introduction 
 

The objective of the recommendation framework (RF) proposed in this thesis is to 
enable a quantified understanding of software architecture design in terms of quality 
requirements that constrain a software system. The proposed method provides automated 
support for deciding which of the specified architecture structures best suits the quality 
requirements in question. The context of the method, i.e. ISO/IEC 9126 quality attributes 
[20] and Buschmann et al. architectural patterns [9], are chosen for the reasons indicated in 
sections 3.3.7 and 4.2.3 respectively. Figure 13 illustrates the framework usage which is a 
step forward of the Figure 1 that indicated the main aim of this thesis, i.e. bridge the gap 
between quality requirements and software architecture. The idea of such architectural design 
support originates from a lack of assistance during the achievement of quality requirements. 
Section 4.4 discusses this gap in software engineering and introduces an approach of quality 
requirement-oriented support for architectural design. The proposed design model puts 
pressure on quality requirement-oriented design where the recommendation framework finds 
its usage. The framework is inspired by the work of Svahnberg et al. [30]. 
 

 
 

Figure 13 - An illustration of the Recommendation Framework usage 
 

Despite the background that Chapters Two – Four provide, the proposed 
recommendation framework is also introduced in terms of several new aspects which are not 
mentioned earlier. Hence, the following several sections investigate important concepts that 
are indicated as a preparation for a clear framework understanding.  
 

6.2 Background philosophy 
 

Software architecture has become an important issue in software engineering. Quality 
requirements have also received increased attention, but there are still no effective solution 
how to handle them. Architectural design is traditionally performed as an informal activity. 
More precise and systematic approach to software architecture design is needed to improve 



 The role of quality requirements in software architecture design  
 

 

56 

the architect ability to understand and analyze the design activity regarding the fulfilment of 
quality requirements. Insufficient research has been done in this area. The recommendation 
framework is an attempt of bridging the gap between quality requirements and software 
architecture through the architectural design process. State-of-the-art findings exhibit that 
Svahnberg and Wohlin [30][31] had done similar research. The work in this research is based 
on these papers.  

One of the techniques in software architecture evaluation is experience-based 
evaluation described in section 2.5.3. The concept of patterns is an outcome of the experience 
of architects and designers where their knowledge, understood intuitively, was documented. 
Software engineers have tent to reuse the same design solutions over and over again. Certain 
ways of structuring software elements proved to have good properties which were preferred 
in choosing certain solutions over alternative candidates. These design solutions were a result 
of repeated appliance of software element organizations on different levels of abstraction 
which generally covered different kinds of requirements. As the size and complexity of 
software systems increases it has become important to have ways of choosing appropriate 
software architecture structure to fulfil the system requirements. However, quality 
requirements are not often addressed adequately in existing solutions as functionality is. 
Architectural patterns serve not only the basic knowledge for good design paradigms but also 
an effective tool in analyzing quality attributes. By documenting the existing knowledge, 
discussions, and reasoning how a certain software elements combination influences certain 
quality attributes, patterns are a verified way in the achievement of quality requirements. 
This recommendation framework is a systematic approach of fulfilling quality requirements 
by architectural means with the use of Buschmann et al. [9] architectural patterns.  
 
 

6.3 Support for design activity 
 
 “Design and programming are human activities; 

forget that and all is lost” 
- Bjarne Stroustrup 

 

 
Software architecture design and evaluation are typical human activities. It takes a lot of 
knowledge that mainly comes from the previous experience to manage the whole design 
process. The activity itself, consist of a number of steps such as collecting, documenting, and 
managing the information relevant during the design. One of the most important part deals 
with making trade-offs among solution alternatives. Candidates are investigated carefully in 
order to choose the most suitable software architecture description for the desired 
requirements. The task remains difficult as it relies on experience-based estimations (section 
4.3.3). Human assessment is tendentious, error-prone, and expensive. That is why there is a 
need of a reliable approach that could manage the architectural design and evaluation. 
However, software engineering still lacks in such automated procedures. The proposed 
recommendation framework is an attempt of bridging this gap. It is created to assist the 
designers fulfil the required quality requirements during the software architecture design.  
 Section 4.4 introduced a design method that focuses on quality requirements at first 
instead of functional requirements. It starts with a design of software architecture guided by 
quality requirements of the system. The model serves as basis for the use of the 
recommendation framework. Architectural patterns used by the framework are used when the 
fundamental decisions are taken. They affect the whole fundamental system structure 
different from other pattern categories described in [9] that address only single parts of the 
architecture. Therefore, the recommendation framework finds its usage in the first step of the 



 The role of quality requirements in software architecture design  
 

 

57 

proposed design method during the quality requirement-oriented design. Since architectural 
patterns set the fundamental structure of a system, quality requirements can be covered 
before the functionality is. Based on the preliminary architecture established by the 
framework, an architect addresses the functional requirements with the assurance that a 
certain quality level is already achieved. 
 
 

6.4 Requirements variability and management  
 

In practise, requirements often change during the software development. Kotonya and 
Sommerville in [12] depict several reasons that cause requirements to change. These include: 
changes to the system environment, a better (growing) understanding of the customers needs, 
new requirements appear, and the existing ones need modifications. Maintaining the 
requirements variability becomes a critical part among other requirement engineering 
activities. It is therefore worth to mention about the changing requirements in the context of 
this design support. Failure to control and document the changing requirements may result in 
poorly specified, or in worst case, inappropriate quality attributes for a system to develop. 
Kotonya and Sommerville [12] also offer a number of solutions to minimize such difficulties.  

The framework does not decrease its usability when the requirements are not static. 
Therefore, the concept of requirements management is not questioned. However, due to the 
fact that this research denotes the significant role of quality requirements in software 
architecture design it is also crucial to focus on effective quality requirements management. 
After all, requirements definition and analysis is the first stage of system development and 
should be carried on from the very beginning during the requirements elicitation. 
Nevertheless, requirements management is not an activity of the architectural design in 
particular, but the whole software development process. Though, it should rather be 
conducted in parallel to the design so that the requirements specification is always current. 
Effective requirements management benefits generally in increased customer satisfaction as 
the desired requirements are better prepared in the requirements specification used as a basis 
for further design.  

In theory, requirements management is directed towards the maintenance of both 
software requirements categories. Unfortunately, as it was indicated, quality requirements are 
often weakly specified or even totally neglected in practice. The functionality is still a 
predominating issue in software development, also in the context of requirements 
management. 
 This section discusses in general the concepts of variability and management in the 
context of quality requirements. However, the main aim is to emphasize the role of quality 
requirements as a method for requirements variability. The way the system functional 
requirements are decomposed into a combination of components leads to high efforts in case 
of requirements changes [7]. This is because a requirement change may lead to at best a local 
change in a component, or in worse case – may cause a number of changes in the 
architecture. A proper architectural design decreases the scale of possible requirements 
variability. Additional efforts include increased costs, schedule, erosion, resource usage, etc. 
Maintainability is a quality attribute that affects the fundamental architecture. Having an 
appropriate, encapsulated structure, the system prevents from additional architecture 
modifications. Though, it should be relatively possible to incorporate requirements changes 
without unnecessary changes that impact other architectural parts.  

To sum up, requirements management ensures that the input of the proposed 
framework, i.e. requirements specification, is up to date so that the system (quality) 
requirements represent the actual customer needs and expectations in such a way, they can be 



 The role of quality requirements in software architecture design  
 

 

58 

used for the proposed design activity. In case of a possibility that requirements could change, 
there are quality requirement methods to prevent the efforts of unnecessary modifications. 
These methods should be considered by the requirements management activity which ensures 
the system delivers the expected outcomes, i.e. the solution architecture meets the actual 
requirements.  
 
 

6.5 Method activities 
 
The proposed recommendation framework consists of three activities as follows. 
 

1. Identify the required quality attributes. 
2. Perform quality attributes prioritization. 
3. Calculate the choice of solution architecture. 

 
These are described in detail as follows: 
 
� Step 1: 
 

• Input: 
 

Quality requirements from the requirements specification. 
 

• Output: 
 

Quality attributes identified from quality requirements.  
 

Chapter Two and Three indicated that it is crucial to ensure quality attributes of a 
system when designing software architecture. Therefore, they need to be clearly specified in 
order to be properly recognized and addressed by the architecture. The first step of the 
framework usage is concerned about identifying the quality attributes from quality 
requirements listed in the requirements specification. Typically, software architecture is 
likely to ensure the achievement of more than a single quality attribute. In many cases, 
several attributes are indicated from a single quality requirement. On the opposite, a 
particular attribute may be specified in a number of quality requirements. In case there are no 
quality requirements, or the existing ones are badly specified so that even a single attribute 
cannot be listed, there is no point in using the framework as there is no data given as input.  

It is not the intention of this thesis to present guidance how to identify attributes from 
quality requirements. According to section 3.2.8 there is no elaborate method of handling 
these requirements. Therefore, more efforts should be directed towards eliciting, specifying, 
testing and verifying quality requirements in software engineering. Several concluding 
remarks about little guidance and lack of methodologies in handling quality requirements are 
indicated in Chapter Eight among other future work objectives. Nevertheless, to emphasize 
the vague and impressive specification of quality requirements Bosch [7] proposes to define 
scenarios (see section 4.3.3 for details). 

This step is simple to describe, although not a trivial task in practical software 
development. The intention is that desired quality attributes of a system are listed so that their 
notability is understood by architects and they are capable of being used in further steps.  
 
 



 The role of quality requirements in software architecture design  
 

 

59 

� Step 2: 
 

• Input: 
 

Quality attribute(s) towards which the system is designed. 
that ought to be met by the resulting software architecture. 

 
• Output: 

 
Quality attributes with relative weights of their importance. 

 
The next step is to prioritize the outcomes of the previous step, i.e. the quality 

attributes towards which the system is designed. The concept and importance of prioritization 
has already been described in section 3.2.6. Nevertheless, it is worth to discuss why this 
activity is one of the method’s steps. First of all, this step can be excluded and the framework 
will be still capable of giving design solutions. However, they may not be as precise as in the 
case of conducting prioritization. In such case, the priority value equals one. Having a set of 
quality attributes with relative weights of their importance ensures that the most desired 
attributes will be addressed in the first place. Usually stakeholders are responsible for 
conducting quality requirements prioritization, but it extremely important for a software 
architect to establish priorities between specified quality attributes himself because: 
a) they often tend to impact each other negatively such as maintainability and performance, 
security and usability, or security and performance (see section 3.2.4 for quality attribute 
relationships); 
b) they are fulfilled in the architecture by different amounts of resources (means). 
Therefore, it is highly required to perform the prioritization activity in case of these potential 
conflicts. Relative weights sort quality attributes in order of which they should be taken into 
account during the software architecture design. Priorities also serve basis when some quality 
attributes may need to be sacrificed in order to meet project schedule, budget, etc. In case of 
the recommendation framework, the irrelevant attributes should not be taken into account 
(excluded) in the usage steps. 

Conducting prioritization includes subjective judgement which quality attributes are 
of higher importance than the others by assigning weights (values). The greater the 
differences among the values are, the more precise final results are. There is no need for 
prioritization when a single quality attributes is taken into account for the design. Typically 
software architecture is likely to ensure the achievement of a set of quality attributes to 
conduct prioritization on. The number of attributes can be reduced by:  
a) grouping them into categories, each representing some aspect of the system requirements;  
b) choosing a smaller set of quality attributes to focus on [30].  
 
Prioritizing can be applied by several methods. The prioritization in Analytic Hierarchy 
Process (AHP for short) as described in [30] is based on pair-wise comparisons meaning that 
each quality attribute is compared to others. Figure 4 serves as an example of AHP 
comparisons where each relationship between attributes is specified. However, AHP uses a 
wider scale of possible answers – a value in a set in favour of one of the attributes in each of 
pairs to compare. Svahnberg and Wohlin [31] used a comparison scale answered with a 
number between 1 to 9. Figure 14 is an illustration of such approach. 

 
 
 



 The role of quality requirements in software architecture design  
 

 

60 

QA1 -9 -8 -7 -6 -5 -4 -3 -2 -1  +1 +2 +3 +4 +5 +6 +7 +8 +9 QA2 

 
Figure 14 - An example of AHP quality attribute comparison 

 
A vector (called PQA) with assigned relative weights of importance for every quality 
attribute (PQAm, where m is a number of an attribute) is a result of the prioritization. This 
procedure determines a precise evaluation of the priorities and dependencies among quality 
attributes in question. However, the number of AHP steps and mandatory comparisons 

increase the method’s usage complexity. 






 −
2

1m
m  comparisons have to be conducted, 

where m is the number of quality attributes in question. In case of this research, the total 
number of characteristics categorised by the ISO/IEC 9216 [20] which are applicable by the 
recommendation framework is 16. This means that “in worst case” 120 comparisons need to 
be performed among the set of quality attributes as shown in Table 8. 
 
 

Number of QAs 1 2 3 4 5 10 16 
Comparisons 0 1 3 6 10 45 120 

 
Table 8 - AHP comparisons per number of quality attributes 

 
Although, it is not likely that a system must cover all quality attributes investigated by this 
study, and each comparison is conducted very quickly [30], AHP prioritization would 
decrease the framework’s simplicity and general applicability. Therefore, an easier method is 
proposed despite the fact there is slightly less chance of choosing the most suitable 
architectural pattern since more subjective weights (in opposite to AHP) are assigned to the 
desired quality attributes  

Another prioritization technique that can be used is the 100-dolar test. It is a very 
straightforward method, where 100 imaginary units are distributed between the given quality 
attributes. The results are specified on a ratio scale with the assigned number of dollars. For 
example, 50 dollars are given to QA1, 30 dollars are assigned to QA2, and the rest goes to QA3 
that summarise to 100 dollars in total. A problem with this technique comparing to AHP is 
that there is no straightforward dependencies between a pair of attributes. However, the 
overall viewpoint on a set of quality attributes presents quite well the required order weights 
of their importance. This research suggest the following, much easier method for quality 
attributes prioritization similar to 100-dollar test: 
 
1. Choose a scope of possible answers for the assessment. 
 

xPQi ≤≤1  

 
where: 
 

 
PQi 

x 

 
– is an importance weight of i-th quality attribute, 
– is the chosen top integer value of the scope. 

 
2. Assign weights to the quality attributes within the specified scope. 
 
Each quality attribute is given a value from the chosen scope. The wider scope of answers is 
chosen, the more precise the results should be, as it allows for presenting greater 



 The role of quality requirements in software architecture design  
 

 

61 

dependencies among a set of attributes. A typical assessment ten-point scale should be 
sufficient.  
 
 
3. Normalise the importance values. 
 
The assigned values are normalised using the following formula to determine the relative 
“distances” between the adjacent values.  
 

∑
=

m

m

i
i

PQ

PQ
QAP

1

 

 
where: 
 

 
QAPi 

 
– is a normalised weight of i-th quality attribute. 

 
 

Quality Attribute  Weight 
QA1 QAP1 
QA2 QAP2 
QA[…]  QAP[…]  
QAm QAPm 

Sum:  1 
 

Table 9 - Quality attributes with their weights of importance 
 
Table 9 presents the expected outcome of this step, i.e. a list of the quality attributes 
identified by the first step containing their normalised weights. To summarise, the purpose of 
this prioritization activity is to assign values to distinct prioritization quality attributes that 
allow establishing a relative order between the quality attributes within the desired set. 
 
 
� Step 3: 
 

• Input: 
 

Quality attributes with their relative weights. 
 

• Output: 
 

The most suitable architectural pattern representing the best opportunity  
to deal with the given quality attributes. 

 
This step makes use of the empirical research results described in Chapter Four. 

Step 3 is the actual “heart” of this proposed design method where the recommendation 
framework decides on a recommended architecture. The “solution” determines a number 
from 1 to 8 that corresponds to Buschmann et al. [9] architectural patterns listed in Table 8. 
This table also contains the values required to calculate the results using the following 
formula: 



 The role of quality requirements in software architecture design  
 

 

62 

 

( ) ksolutionQAVQAP
i

ikkk =⇒






 •∑
1

,max  

 
where: 
 

 
j 

QAVk,i 

 
– is the number of architectural patterns – eight in total. 
– is the i-th quality attribute value of the k-th architectural pattern  
   from Table 8. 

 
6.6 Benefits and liabilities 

 
The most important idea of the proposed recommendation framework is concerned 

with the achievement of quality requirements. It serves a systematic approach that addresses 
quality requirements via architectural means. Therefore, it is an automated assistance for the 
software architecture design activity and provides a ready-made decision rationale. The 
solution architectural structures consist of Buschmann et al. patterns [9] that enable a 
common understanding among architects. Hence, the results are capable of being clearly 
understood in terms of benefits and liabilities of each architectural pattern with respect to its 
quality attribute [30]. The use of the framework saves much effort that would have been 
spent on searching for potential architectural solutions that cover the desired quality 
requirements. Nevertheless, identified candidates would have been evaluated against each 
other to choose the best applicable solution. At it is defined in section 4.3, software 
architecture evaluation is a process of assessing whether architecture possesses the desired 
quality attributes. The recommendation framework usage covers and therefore may even 
replace the evaluation process. Similarly is in case of design trade-offs (section 3.2.7), where 
quality attributes are compared against each other to a) measure the relationships between 
attributes as some of them influence each other positively or negatively; b) in case some of 
the requirements have to be sacrificed in terms of others. The framework determines 
solutions that should cover the issue of quality attribute trade-offs. In general, benefits of the 
recommendation framework include savings in areas such as project schedule, labour, 
resources, and budget funds. 

The recommendation framework has also liabilities. First of all, it does not address 
the desired quality attributes equally, i.e. the method suggest the best opportunity to ensure at 
best the given combination of quality attributes, so they are not achieved at the same level. 
Even though the prioritization step was especially added to the method to ensure that most 
important quality attributes are taken into consideration t first place, the procedure will still 
cover the required attributes by different means. This generally results in less precise 
outcomes if a large number of quality attributes is considered.  

Moreover, the data required to build the framework is based on the interviewed 
persons subjective judgements. When applying empirical research the concern of validity and 
threats is important and needs special attention. For the questionnaire used in this thesis, the 
threats are mainly caused by small sampling and also a lack of knowledge in the area of this 
research. Therefore, the results do not ensure a proven level of accuracy.  
 
To summarize: 
 
 + addresses quality requirements 
 + automated design support 
 + saves much design efforts as it helps to manage the design activity. 



 The role of quality requirements in software architecture design  
 

 

63 

 + tool for trade-offs  
 + helps to understand the benefits and liabilities of each architectural pattern with 

respect to its quality attributes [30]. 
 + tool for evaluation 
 + provides understanding for design decisions (rationale) as it uses patterns 
 – based on subjective judgements  
 – does not consider relationships between quality attributes 
 – small probe to provide reliable data that could be used in practise 
 – the more quality attributes are in question, the less precise the results are 
 
 
 

6.7 Quality requirement-oriented and pattern-based design method 
 
6.7.1 Introduction 

 
Buschmann et al. [9] differentiated patters into three categories, i.e. architectural 

patterns, design patterns, and idioms. These patterns cover various ranges of scale and 
abstraction.  
 

• Architectural patterns  (AP) help to decompose a software system into global 
subsystems. They set the overall structuring principles to express a fundamental 
structural organization schema for a system. They specify the system-wide structural 
properties.  

• Design patterns (DP) support the refinement of these subsystems, or of the 
relationships between them. They describe a commonly-recurring structure for 
components communication.  

• Idioms help in implementing particular components aspects. They specify how to 
implement an architectural issue using the features of certain programming 
languages. 

 
This introduction into patterns categories helps to understand the different abstraction level 
of patterns usage. Hence, they also address quality requirements at various levels. Patterns in 
general and Buschmann et al. [9] categories have already been described in detail in section 
4.2. This section indicated certain relevant issues as a starting point for this design method’s 
discussion. 

Section 4.4 proposed a quality requirement-oriented design method, where quality 
requirements are at first taken into account during a software architecture design. The 
recommendation framework serves assistance for such an approach. It uses ISO/IEC 9126 
quality attributes [20] on input, whereas on output it generates patterns which are mentioned 
above and categorised as architectural. However, it is indicated that these patterns establish 
only a fundamental architectural structure so quality requirements at top-abstraction level can 
be fulfilled. Architectural patterns help to address global quality requirements that affects 
architecture as a whole, e.g. maintainability, reusability, and flexibility is ensured by 
breaking a system into components. However, this is only a top-level decomposition such as 
in layered style, where the system in broken into several layers. Such procedure covers in 
some way quality requirement(s), but does not guarantee they are fulfilled entirely since the 
structure of lower-level components is not concerned with the exemplary attributes. 
Moreover, some quality requirements are not met by the top-abstraction level at all. Even 



 The role of quality requirements in software architecture design  
 

 

64 

though a system is divided into certain subsystems structure, it is the responsibility of these 
lower components to capture the intended quality requirements. In consequence, quality 
requirements are left uncovered. Therefore, architectural patterns are not enough to address 
entirely the desired quality requirements. Buschmann et al. [9] categorised patterns with 
respect to levels of range and abstraction. Introduced patterns are proved to have a significant 
impact on the ability to analyze architecture for certain quality attributes. All these patterns 
are relevant for the design while they provide the knowledge to address quality requirements. 
Hence, the design based on architectural patterns, design patterns, and idioms can be 
combined as they all comprise the architectural description and have a significant impact on 
the ability to analyze architecture for certain quality attributes.  
 
The proposed quality requirement-oriented and pattern-based design method originates from: 

• the concept of quality requirement-oriented design method discussed in section 4.4, 
• the idea of recommendation framework as a design assistance for fulfilling quality 

requirements, 
• the use of various patterns as means for representing software architecture abstraction 

levels, 
• the lack of a support for achieving quality requirements at all design levels. 

 

 
 

Figure 15 - An illustration of pattern categories at different abstraction levels 
 
 

6.7.2 Top-down vs. bottom-up design approach 
 

Top-down and bottom-up are strategies of designing software architecture. These are 
differentiated by the starting point of a design, i.e. a system abstraction level. Bottom-up 
design starts by defining the low-level components. Then moves up towards more and more 
complex subsystems using these already defined ones. These specified in detail, individual 
components are combined together to form larger parts until a complete system if 
consequently formed. On the other hand, top-down approach forms a fundamental structure 
without going into details. Then, each decomposed part of the system is refined by designing 
in more detail. Each created part may be refined again, defining a more detailed structure 
until the entire system is decomposed in sufficient detail.  



 The role of quality requirements in software architecture design  
 

 

65 

Many architectural designs use a mixture of top-down and bottom-up design. Top-
down approach is often conducted when the system is designed from the scratch, whereas 
bottom-up design is performed when a system uses Commercial off-the-shelf (COTS) 
components cause having predefined parts, a system needs to be designed towards from these 
parts towards the entire system. Bosch in [7] indicates that from his experience it is not 
feasible to start from details of a system and therefore recommends a top-down approach.  

From the position of this thesis, the choice of design approach direction has no matter 
as both of these strategies seem to have equal influence during quality requirements 
fulfilment. Nevertheless, patterns from definition decompose a system into components. This 
means that are observed on a certain viewpoint and used to specify in detail further 
components and their responsibilities. Therefore, the proposed design method represents a 
top-down approach as indicates the abstraction level direction in Figure 15.  
 

6.7.3 Method activities 
 

The quality requirement-oriented and pattern-based design method is concerned (as 
the name suggests) with a design towards quality requirements by the means of patterns. As 
it is proved in Chapter Three quality requirements are hard to manage during an 
architectural design. The method provides a convenient design mechanism for software 
architecture description that allows for the fulfilment of quality requirements by applying 
patterns from [9]. The method starts from the highest abstraction level of patterns presented 
by Buschmann et al. (see Figure 15). The first step is an architectural pattern-based design. It 
results in a software architecture described in terms of architectural patterns that fulfil global 
quality requirements. Then the architecture is designed towards design patterns which results 
in a refinement of software architecture that handles particular quality requirements of this 
‘middle’ abstraction level. The case is similar with idioms – architecture is refined again 
according to idiom patterns that fulfil the requirements specific to this ‘low-level’ design.  
 
Each method part considers different design levels of abstraction. Each of these levels consist 
of similar steps that include: 
 

1. Identify the problem of a given design. 
2. Nominate a pattern that represents a solution of the given problem. 
3. Evaluate the consequences of applying the pattern. 
4. If the quality attributes in question are fulfilled satisfactory,   

go to a lower abstraction level. Otherwise, repeat these steps. 
 
Identifying a problem is about specifying quality attributes relevant to a particular design 
level. The activity of nominating a solution pattern is performed to choose the most suitable 
pattern for the given attributes. The recommendation framework which is pinpointed as a 
yellow rectangle marked as RF in Figure 16 represents this procedure in case of architectural 
patterns at the top-level design. The method is repeated until all the quality requirements 
have been included satisfactory for the specific architectural design and in conclusion – at all 
abstraction levels. Different software architectures are a refinement of the ‘total’ software 
architecture. It illustrates the same architecture in similar way the <<refinement>> stereotype 
describes UML elements. 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

66 

To summarize the method: 
 

• Input: 
QRs that ought to be met by the SA. 

 
o AP stage outcomes: 

SA that fulfils the top-design (global) level QRs. 
o DP stage outcomes: 

SA that fulfils the middle-design (component) level QRs. 
o Idioms stage outcomes: 

SA that fulfils the bottom-design (implementation) level QRs. 
 

• Output: 
SA in description of patterns that fulfils all its QRs 
at every design (abstraction) level. 

 

 
 

Figure 16 - Quality requirement-oriented and pattern-based design method 
 
 

6.7.4 Method summary and conclusions 
 

Due to the size and the complexity of most nowadays software applications, a single 
pattern usage in not enough. A number of or a combination of several pattern is required. 
Patterns are concerned with various ranges of scale and abstraction. They can be applied in 



 The role of quality requirements in software architecture design  
 

 

67 

different stages of software architecture design as they help to address a variety of different 
design problems. From the perspective of this thesis aims – to address a variety of different 
quality requirements. Pattern appliance at different abstraction (design) levels fulfils quality 
requirements specific to these levels. “The benefits of a set of related patterns is more than 
the sum of benefits of each individual pattern in a set” [9, p. 381].  

In other words, a combination of patterns may bring positive results as they exhibit 
different relationships with each other. To take advantage of such sets, patterns need to be 
organized into pattern systems, i.e. uniformly methods to handle a significant number of 
patterns in a convenient way [9]. Hence, the proposed design method could find its usage 
when a predefined assistance provided a search strategy to support such architectural design 
with patterns. Pattern systems ensure the guidance to support the software architecture design 
based on patterns. However, such method itself does not guarantee the fulfilment of quality 
requirements. Therefore, a tool for pattern selection is required and the recommendation 
framework for architectural patterns (marked as a yellow rectangle called RF in Figure 16) 
determines the first step in the proposed approach.  
 

6.8 Summary and remarks 
 

As it was indicated in section 2.5, software architecture is expressed with a 
combination of structural views of a system, where each view a represents a certain 
abstraction of the system with respect to different criteria. Software architecture should 
describe a high-level view of a system structure and therefore - abstract from implementation 
details. One of the main reasons (among other listed in section 4.2.3) why architectural 
patterns are chosen for the recommendation framework is that they decompose a software 
system into global subsystems representing the fundamental organization scheme of a 
system. However, each architectural view is a specific abstraction of the architecture, for a 
specific purpose. Different patterns denote different dependencies between components and 
structural properties. Therefore, software architectures cannot be based on a single 
architectural pattern. Often architecture must address a number of quality requirements that 
different patterns at different abstraction levels support. An architect has to combine several 
patterns to form a structure that covers all of the desired quality requirements. Therefore, the 
recommendation framework is only the first step in the quality requirement-oriented and 
pattern-based design method which satisfy all quality requirements at all relevant abstraction 
levels.  Of course, the choice of architectural pattern(s) is a major, but an architect has to be 
also familiar with patterns far beyond these categorised as architectural. Buschmann et al. [9] 
is a good selection of patterns that presents issues and alerts of quality properties they affect. 
Important is also that these patterns are identified with respect to abstraction level they 
concern. Therefore, they are used in this research. Also, based on [9] Chapter Seven 
attempts to prove the recommendation framework validity. 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

68 

 
 
 

Chapter Seven – Usage examples and validity 
 
 

7.1 Introduction 
 

The recommendation framework introduced in the previous chapter is worth nothing 
until its validity is proven. The validity in this research is concerned with the 
recommendation framework ability to provide expected results, i.e. choose the most suitable 
architectural pattern for a given set of quality attributes identified from quality requirements.  

The framework results validity in terms of the interviewed persons subjective 
judgements is discussed in section 5.2.6. Threats to the validity caused by conducting an 
empirical research is not the issue of this part. The point is to compare whether the literature 
sources reflect the outcomes of the framework.  

One way to verify the validity is conduct comparisons with the literature. The 
literature focuses to some extent on architecture structures analysis against quality 
requirements these architectures support. A similar research has been done by Svahnberg and 
Wohlin [29] in which the literature is compared against the quantitative data from a similar 
empirical research [31]. The research conducted in [31] will be also compared as a good 
source for quantitative information. The literature view is based on a) Buschmann et al. [9] as 
the architectural patterns originate from this book and b) Bosch [7]. These are selected due to 
the fact the presented architectural structures are described in terms of their benefits and 
liabilities to fulfil quality attributes. However, there are some limitations of such comparison. 
These are as follows:   
 

• the literature provides qualitative, whereas the framework quantitative information 
on architectural patterns, 

• the RF uses 16 quality attributes for describing patterns, whereas the literature  is 
concerned with only several that seemed important for a particular pattern, 

• neither Buschmann et al. [9] nor Bosch [7] use the same categorisation of quality 
attributes investigated in this research. 

 
These limitations decrease the potential ability to make the comparisons. Therefore, the 
recommendation framework results cannot be proved to be entirely reliable. The quantitative 
data of the framework is compared to the qualitative information found in the literature. This 
enables to verify only a certain extent to which the framework values (see Table 8) exhibit 
the information the literature provides. Therefore, some interpretations and translations have 
to be made in order to verify the validity. 
 

7.2 Interpretations  
 

Limitations determine potential weaknesses of the comparison. This section specifies 
the interpretations and translations have to be made in order to compare the qualitative 
information from the literature (Buschmann et al. [9] and Bosch [7]) with the quantitative 
data from the recommendation framework.  



 The role of quality requirements in software architecture design  
 

 

69 

All architectural patterns used by recommendation framework are investigated in [9] 
as they were used from this selection. However, Bosch [7] mentions only about Layers, Pipes 
and filters, and Blackboard. Therefore, the comparison is based mainly on these.  

The literature uses different taxonomy and categorisation of quality attributes. Neither 
Buschmann et al. [9] nor Bosch [7] use ISO/IEC 9126 [20] quality model for identifying 
quality attributes of patterns as it is in case of the recommendation framework. Therefore, in 
order to establish a common vocabulary it is assumed that performance characteristic in [9] 
and [7] is used in common with efficiency [20]. Also, flexibility and reusability are 
recognized as maintainability. However, one should keep in mind that performance is also 
observed as not only efficiency, but also reliability.  

To complicate things even further, the empirical research was conducted to obtain the 
data required for a detailed design, i.e. to ensure the ability of addressing quality each 
subcharacteristic in sufficient detail. The literature considers whether a pattern influence 
positively or negatively a top-characteristic. Moreover, in some cases these are even 
unmentioned. To enable the comparison between the literature qualitative information, the 
following translations have to be made: 

• value of a characteristic (from Table 7) is equal to the sum of its sub-characteristics, 
• unmentioned characteristics or these identified in some cases as passive correspond to 

zero value. 
 

7.3 Usage example 
 

The main purpose of this chapter is to verify whether the framework is capable of 
choosing best (optimized) solution for a given set of quality attributes. However, it is also 
worth to demonstrate an example how to manage the steps involved in this design support. 
Therefore, besides the discussion on validity, some example calculations are presented at first 
in order to illustrate the method. Then, these resulting architectures are compared to what 
literature suggests in similar designs. The following examples take into account limitations 
and assumptions discussed in the previous section. 
 
� Step 1: 
 
Besides the functional requirements, the requirements specification consists of the quality 
requirements such as: 
 

1. The system shall be capable of incorporating new requirements. 
2. The system shall be adaptable to other environments. 
3. The system shall be able to give a response no later than X seconds. 
4. The system shall have less than Y hours downtime per Z months. 

 
These quality requirements identify maintainability, portability, efficiency, and reliability 
respectively. Quality requirements put constraints on quality attributes. They are usually 
specific values, a scope, or ranges of values for quality attributes. Some example constraint 
values that may be placed on these requirements: 

• number of required modifications to incorporate new system feature, 
• total allowable time needed to switch the system into a different environment. 

Section 3.3.6 presents examples of metrics that are used to constrain quality attributes. 
 
The identification process is relevant for the software architecture design as it allows for 
concrete and precise definition of quality attributes. It is not the subject of this thesis to 



 The role of quality requirements in software architecture design  
 

 

70 

investigate this activity. Also, for the purpose of this validity example, quality attributes are 
predefined; chosen as a starting point for further discussion. Their exemplary specification 
aims to present all required steps involved in this method and hence – ensure a good method 
understanding.  
In order to illustrate the recommendation framework usage, there are two examples that are 
considered: System A and System B. The following table identifies their quality attributes 
from two requirements specifications. 
 

System A System B 
 
• Usability 
• Maintainability 
• Portability 
 

 
• Efficiency 
• Maintainability 

 
� Step 2: 
 
The second step conducts quality attributes prioritization. 
 
1. Choose a scope of possible answers for the assessment. 
 

.System A: 61 ≤≤ iPQ  

 

System B: 61 ≤≤ iPQ  

 
 
where: 
 

 
PQi 

 
– is an importance weight of i-th quality attribute. 

 
 
2. Assign weights to the quality attributes within the specified scope. 
 

System A System B 
 

Usability 
Maintainability 

Portability 
 

 
PQ1 = 2 
PQ2 = 2 
PQ3 = 2 

 
Efficiency 

Maintainability 

 
PQ1 = 3 
PQ2 = 3 
 

 
These examples are further analysed in terms of the framework validity. Therefore, the given 
quality attributes are assigned with the same weights in order to compare the data further 
with the qualitative information. Such procedure is also performed when the attributes in 
question are equal important for a design 
 
2. Normalise the priority values. 
 

System A System B 
 

Usability 
Maintainability 

Portability 

 
QAP1 = 0.33 
QAP2 = 0.33 
QAP3 = 0.33 

 
Efficiency 

Maintainability 

 
QAP1 = 0.50 
QAP2 = 0.50 
 



 The role of quality requirements in software architecture design  
 

 

71 

� Step 3: 
 
It is assumed that the value of a characteristic is a sum of its sub-characteristics values. For 
example: Efficiency  =  (Time behaviour  +  Resource utilisation) /2 
 
Therefore, the calculation for the final results are: 
 
The required calculations are only presented for the most suitable architectural pattern which 
best meets the given quality attributes. 
 
System A final results: 
 

Layers[Usability, Maintainability, Portability]   

 
 

( )
( )
( )

5.97

1.651.721.791.6433.0

1.721.631.841.8033.0

1.241.471.5833.0

≈
+++∗+
+++∗+

++∗=

 

 
 
Table 10 lists architectural patterns in order of the ability to fulfil the usability, 
maintainability, and portability quality attributes. In consequence, the framework 
recommends the System A the Layered pattern to meet best the set of given attributes. 
 

Pos. Pattern Score 
1. Layers 5.97 
2. Broker 4.11 
3. Pipes & Filters 3.89 
4. MVC 2.49 
5. PAC 1.31 
6. Microkernel 1.24 
7. Reflection -0.21 
8. Blackboard -1.43 

 
Table 10 - RF results for usability, maintainability, and portability 

 
Similarly with the results of the System B, where the framework identified the Pipes and 
filters pattern as the most suitable architectural pattern for a combination of efficiency and 
maintainability quality attributes. Table 11 sorts architectural patterns towards their 
fulfilment of quality attributes identified for fulfilment during the design of System B. 
 
 
System B final results: 
 

Pipes & Filters[Efficiency, Maintainability]   

 
 

( )
( )

4.70

1.711.551.731.755.0

1.831.845.0

≈
+++∗+

+∗=
 

 
 
 



 The role of quality requirements in software architecture design  
 

 

72 

Pos. Pattern Score 
1. Pipes & Filters 4.70 
2. Microkernel 4.33 
3. Broker 2.69 
4. Reflection 1.80 
5. Layers 1.69 
6. PAC -1.89 
7. Blackboard -2.52 
8. MVC -2.74 

 
Table 11 - RF results for efficiency and maintainability 

 
 

7.4 Qualitative study 
 

This section presents the literature view, i.e. what information the literature sources 
provide about the strengths and weaknesses of architectural patterns. Despite the limitations 
identified in section 7.2 there are several following that prevent from a straightforward 
comparison. 

Although some relationship between patterns in general and certain quality attributes 
is available, the impact is investigated in terms of benefits or liabilities that a pattern impose. 
Moreover, different quality attributes are investigated for different patterns – a number of 
quality attributes are left unmentioned. It is assumed that the identified relationships are: 

• (+) positive – a pattern supports a quality attribute, 
• (–) negative – a pattern does not support a quality attribute, 
• (x) passive – a quality attribute is neither benefit nor liability of a pattern.  

 
A passive influence is also given when the literature leaves the relationship unmentioned. 
This means, there is nothing extraordinary in relationship between a patter and a certain 
quality attribute. Although several relationships are listed, there is no order between them to 
define: 

• how quality attributes affect each other within a particular patter, 
• how quality attributes of a pattern influence quality attributes of other patterns. 

 
This complicates the comparison even more. In consequence, it is not a trivial task to 
perform a relative comparison that is able to predict whether the research outcomes are one 
hundred percent valid. Nevertheless, it is possible to measure the recommendation 
framework reliability to some extent. The literature view is represented by Buschmann et al. 
[9] and Bosch [7] since these sources reveal the strengths and weaknesses of certain 
architectural patterns4. 

To ensure the comparison is based on the various literature views so that the results 
are compared to different and independent descriptions, two well-known sources are chosen. 
Buschmann et al. [9] and Jan Bosch [7] identify strengths and weaknesses of certain 
architectural patterns at the best of all investigated literature sources. Three most significant 
and recognized architectural patterns discussed in both [9] and [7] are used for this 
discussion: layers, pipes and filters, and blackboard.  

                                                 
4 Jan Bosch in [7] uses the term architectural style synonymously to architectural pattern. 



 The role of quality requirements in software architecture design  
 

 

73 

The first step is to investigate [9] and [7] to identify points of view on the specified 
architectural patterns. Tables x, x, and x illustrate in a convenient way benefits and liabilities 
of layers, pipes and filters, and blackboard respectively. These describe the quality attribute 
relationships relevant for the comparison discussion in the following section. 
 

• Layers 
 
Impact QA Explanation 

+ Changeability Individual layer implementations can be replaced by 
semantically-equivalent im0plementations without too great 
effort [9]. 

+ Maintainability Changes often affect only one layer. Adapting affected without 
altering the remaining layers [9]. 
Layers have small dependencies on each other; changes are 
implemented affecting one or small number of components [7]. 

+ Portability Changes of the hardware, the operating system, the window 
system, special data formats and so on often affect only one 
layer [9]. 

+ Testability Test particular layers independently of other components [9]. 
+ Usability Supports standardization. Defined and accepted levels of 

abstraction enable the development of standardized tasks and 
interfaces. This allows for using products from different 
vendors in different layers [9]. 

– Efficiency Layering increase high efficiency penalties since data is 
transferred through a number of intermediate layers [9]. 
Computation requires several switches of method context 
resulting in decreased efficiency [7]. 

x Reliability A high degree of reliability (error correction support) can be 
built into layers, for example by using checksums [9]. 

 
Table 12 - Quality attribute strengths and weaknesses of layers 

 
As indicated in Table 12, reliability has passive impact. Buschmann et al. discuss its concept, 
but do not stand on a side. Buschmann et al. in their considerations mention also about sub-
quality attributes (also called subcharacteristics) such as testability and changeability that 
both relate to maintainability, i.e. a top-level quality attribute (a characteristic). These are 
listed to emphasize the literature view, but are generalized to top-level quality attributes 
because of the different categorisation of quality attributes. Hence, this makes the 
straightforward comparison not reliable as these are not equal in meaning. For further 
discussion, quality attributes may be referred also as characteristics and subcharacteristics 
divided according to its level in the ISO/IEC 9126 [20] when necessary. 
 

• Pipes and filters 
 
Impact QA Explanation 

+ Changeability Filters allow for their easy exchange within a processing 
pipeline [9]. 

+ Efficiency Allows for parallel data processing in a multiprocessor system 
or a network [9]. 



 The role of quality requirements in software architecture design  
 

 

74 

Excellent units of concurrency allowing for parallel processing 
[7]. 

+ Maintainability Allows creating new processing pipelines by rearranging, 
adding and removing filters [9]. 

– Reliability Error handling hard to address since pipelines components do 
not share any global state [9]. 

x Fault tolerance If a filter detects errors in its input data, the input may be 
ignored until some clearly marked separation occurs. This 
approach is useful when incorrect input data is possible and 
inaccurate results can be tolerated [9] 

 
Table 13 - Quality attribute strengths and weaknesses of pipes and filters 

 
There are several cases when the literature when the literature presents both sides of a given 
quality attribute. Either there are features that should be considered as benefits or liabilities 
depending on the particular architecture context and development. Table 15 lists quality 
attributes of the investigating architectural patterns to presents their opposite impact sides. 
Buschmann et al. [9] list efficiency as a benefit of pipes and filters identifying advantages. 
On the other hand, there are four main concerns on efficiency gained by parallel processing 
as an illusion. These liabilities are concerned with possible effects and costs involved. 
Nevertheless, efficiency of pipes and filters used properly is a benefit. In some cases, the 
literature depicts advantages and disadvantages of an architectural pattern for a certain 
quality attribute and do not stand on a side. 
 

• Blackboard  
 
Impact QA Explanation 

– Resource 
utilization  

Needless amount of computation is spent on behaviour not 
related to the application domain, e.g. roaming the blackboard 
or multiple components trying to process a data element [7]. 

– Time behaviour No explicitly defined control flow, so the computation is not 
performed in the optimal order [9]. 

+ Maintainability Processing components are independent of each other. Hence, 
they can be added or removed, without changing other 
processing components [7]. 
Blackboard supports maintainability because the individual 
knowledge sources, the control algorithm and the central data 
structure are strictly separated [9]. 

+ Fault tolerance Supports tolerance for noisy data and uncertain conclusions 
performed by the system [9]. 

– Testability Computations do not follow a deterministic algorithm [9]. 
– Efficiency  Suffer from computational overheads in rejecting wrong 

hypothesis [9]. 
Does not support the use of a control strategy that exploits the 
potential parallelism of knowledge sources [9].  
Needless amount of computation not related to a particular 
application domain [7] 

 
Table 14 - Quality attribute strengths and weaknesses of blackboard 

 



 The role of quality requirements in software architecture design  
 

 

75 

The quality attribute impact that the literature survey presents is only concerned about the 
development quality requirements, i.e. there that are observable during the system 
development. Buschmann et al. [9] and Bosch [7] investigate the potential of patterns from a 
developer point of view. Quality requirements concerned with the user needs and 
expectations that can be measured on a system in execution are neglected in their discussion. 
For example, maintainability is mentioned for every pattern, but usability is investigated only 
by Buschmann et al. in relationship with layers.   
 

QA [Source],  
Pattern 

As benefit As liability 

Reliability [7] , 
Layers 

A layer may contain functionality 
for dealing with faults that occur 
in other layers. 

A failure in one layer may result 
in the failure of whole system.  

Efficiency [9], 
Pipes and filters 

Each filter in a pipeline consumes 
and produces data in parallel.  

Cost and defects comparing to: 
- transferring data between filters 
comparing to computation by a 
single filter 
- defects in implementation 
- context switching between 
threats  
- synchronization of filters via 
pipes  

Efficiency [7], 
Pipes and filters 

Excellent units of concurrency 
that allow for parallel processing. 

Every filter performs a small unit 
of computation for each unit of 
data. 

Maintainability [7] , 
Pipes and filters 

Organization of pipes and filters 
allows for their reorganization, 
even during run-time. Changes 
allow for adding, changing, 
removing existing elements. 

Changes affect several filters at a 
time, so the whole their 
arrangement needs to be modified. 
The majority of requirements 
changes affect more than one 
filter. 

Maintainability [7] , 
Blackboard 

Independent processing 
components allow for adding, 
changing, removing the others. 

Naïve design may lead to systems 
that are hard to maintain. 

Reliability [7], 
Blackboard 

The independence of processing 
components and the fact the 
control component iteratively 
activates the various components. 

No central or explicit specification 
of the behaviour which makes 
hard for a system to identify that 
some responsibilities are not 
fulfilled. 

 
Table 15 - Quality attributes from different viewpoints 

 
The quality attribute impact on the following architectural patterns is described entirely from 
Buschmann et al. [9]: 
 

• Broker 
 
Impact QA Explanation 

+ Portability Hides operating system details and network system details 
from clients and servers by using indirection layers as APIs, 



 The role of quality requirements in software architecture design  
 

 

76 

proxies and bridges. 
+ Maintainability Allows for dynamic change, addition, deletion, and relocation 

of objects. 
Distributed services are encapsulated within objects. 

– Fault tolerance Server or broker may fail during program execution and all of 
the applications that depend on the server or broker are unable 
to continue successfully. 

– Testability Many components and many ways of their collaboration 
failure. 

+ Testability A client application developed from tested services is more 
robust and easier itself to test. 

– Efficiency Low efficiency because of the indirection layers that enable 
the system to be portable, flexile and changeable.   

 
Table 16 - Quality attribute strengths and weaknesses of broker 

 
• Model-View-Controller 

 
Impact QA Explanation 

+ Usability The model is separated from the user-interface components. 
Multiple views can therefore be implemented and used with a 
single model. At run-time, multiple views may be open at the 
same time, and views can be opened and closed dynamically. 

– Usability Increased system complexity without gaining much flexibility.  
+ Maintainability Changes to the user interface are easy, and even possible at 

run-time. 
Change-propagation mechanism. 

+ Portability Pluggable views and controllers; allows to exchange the view 
and controller objects of a model. 
User interface objects can be substitutes at run-time. 

– Efficiency Inefficiency of data access in view; views need multiple calls 
to obtain all its display data. 

 
Table 17 - Quality attribute strengths and weaknesses of MVC 

 
• Presentation-Abstraction-Control 

 
Impact QA Explanation 

+ Usability The model is separated from the user-interface components. 
Multiple views can therefore be implemented and used with a 
single model. At run-time, multiple views may be open at the 
same time, and views can be opened and closed dynamically. 

– Usability Increased system complexity because of the implementation 
of every semantic concept as its own PAC agent.  

+ Maintainability Different semantic concepts are represented by separate 
agents independent of other agents. 
Data model and user interface for each semantic concept or 
task within the application developed interdependently of 
other semantic concepts or tasks. 



 The role of quality requirements in software architecture design  
 

 

77 

Change within the presentation or abstraction components of a 
PAC agent do not affect other agents in the system. 

+ Efficiency PAC agents can be easily to different threads, processes, or 
machines.  

– Efficiency The overhead in the communication between PAC agents 
when a top-level agent retrieves data from a bottom-level 
agent (all of them are involved). 

 
Table 18 - Quality attribute strengths and weaknesses of PAC 

 
• Microkernel 

 
Impact QA Explanation 

+ Portability Migrating the microkernel to a new hardware environment 
only requires modifications to the hardware-dependent parts.  

+ Maintainability Copes with continuous hardware and software evolution.  
Implementing an additional view requires only adding a new, 
external server. Extending the system with additional 
capabilities only requires the addition or extension of internal 
servers. 

+ Reliability Allows to run the same server on different machines 
(replication). Failures are easy to hide from a user and do not 
affect the application (in such distributed systems). 

–/+ Efficiency If the functional core of the application platform is separated 
into a component with minimal memory size, and services 
that consume as little power as possible, Microkernel avoids 
performance problems. 

 
Table 19 - Quality attribute strengths and weaknesses of Microkernel 

 
• Reflection 

 
Impact QA Explanation 

– Efficiency Reflective software are usually slower that non-reflective 
systems caused by the complex relationship between the base 
level and the meta level. Inefficiency with extra processing 
with information retrieval, changing metaobjects, consistency 
checking, and the communication between the levels. 

+ Maintainability The metaobject protocol provides a safe and uniform 
mechanism for changing software. 
Metaobjects encapsulate every aspect of system behaviour.  
Supports changes of any kind of scale – even the fundamental 
aspects can be changed. 

– Maintainability Modifications at the meta level may cause damage to the 
software or its environment (dangerous changes).  

– Usability Increased number of components – the greater the number of 
aspects that are encapsulated at the meta level, the more 
metaobjects there are (system complexity). 

 
Table 20 - Quality attribute strengths and weaknesses of Reflection 



 The role of quality requirements in software architecture design  
 

 

78 

7.5 Comparative discussion 
 

This section compares the qualitative study results to the quantitative 
recommendation framework data. In order to start and facilitate the discussion, Table 21 lists 
the summarised literature survey outcomes next to the required framework values. The 
brackets indicate which side of the presented two possibilities is the final (resulting) one. It 
should be noted that the limitations described in section 7.2 involve a certain amount of 
translations and interpretations. This procedure allows for comparing the qualitative and 
quantitative information together in a convenient way. Nevertheless, it reduces the number of 
quality attributes that can be compared. It should also be noted that values for characteristics 
are the average values of their subcharacteristics as follows: 
 
 For example concerning reliability: 

 
 

 Reliability = (Maturity + Fault tolerance + Recoverability)/3  
  

Therefore, reliability for layers: 
 

 

 Reliability[Layers] = [(-0.47)+ (-0.54) + (-0.62)]/3 ≈ -0,54  
 
 
This procedure allows for the comparison. However, it does not take into account the quality 
attribute relationships described in section 3.2.4. Quality attributes may influence, i.e. 
strengthen or hinder each other. It is assumed for the purpose of this comparison that quality 
attributes in a group (subcharacteristics) strengthen each other more or less in the same way. 
Nevertheless, this assumption may not be correct in every case.  

It is not a trivial task to compare quantitative values to qualitative information. 
Nevertheless, some conclusions can be pointed out. Table 21 proves to some extent the 
recommendation framework validity. Surprisingly majority of the empirical values reflect the 
literature view, e.g. when the value is above zero, the literature mentioned that a pattern is 
fairly good at a quality attribute (positive impact). The values that are coloured in orange 
present strong-value disagreements.  
 Moreover, the examples presented in the previous section are based on quality 
attributes that the literature presented positive influence. Layers are proved by the literature 
to be good at maintainability [7][9], portability [9] and usability [9]. Therefore these quality 
attributes were used in the example. In the example results, the framework puts layers on the 
first place (see Table 10) according to a set of these quality attributes with equal weights of 
importance. The third place belongs to pipes and filters which are proven in the literature to 
have positive influence on maintainability [7][9]. However, the literature says nothing about 
portability and usability of pipes and filters.  
 The second example selected an architectural pattern based on maintainability and 
efficiency attributes. The results in Table 12 indicated that the best opportunity for these 
quality attributes with equal importance values is the pipes and filters, followed by 
microkernel and broker not investigated in the literature survey. However, the first result 
reflects he literature view on positive aspects of maintainability [7][9] and efficiency [7][9]. 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

79 

AP QA Bosch Buschmann RF 
Reliability –/+ x -0.54 
Maintainability + + 1.75 
Changeability 
(maintainability) 

x + 1.84 

Testability  
(maintainability) 

x + 1.72 

Efficiency – – -1.71 

Layers 

Portability x + 1.70 
Reliability – – -0.67 
Maintainability –/(+) + 1.69 

Pipes  
& filters 

Efficiency –/(+) –/(+) 1.84 
Reliability –/+ + 0.97 
Maintainability –/(+) + 0.39 
Testability 
(maintainability) 

x – 0.67 

Efficiency – – -0.03 
Resource utilization 
(efficiency) 

x – -0.12 

Blackboard 

Time behaviour 
(efficiency) 

x – 0.06 

Portability + 1,55 
Maintainability + 1,33 
Fault tolerance 
(reliability) 

– -1,45 

Testability 
(maintainability) 

–/+ 1,25 

Broker 

Efficiency 

 

– -0,41 
Usability –/+ 1,75 
Maintainability + 1,24 
Portability + -0,66 

MVC 

Efficiency 

 

– -1,42 
Usability –/+ 1,22 
Maintainability + 1,09 

PAC 

Efficiency 

 

–/+ 0,13 
Portability + 1,57 
Maintainability + 0,45 
Reliability + 1,32 

Microkernel 

Efficiency 

 

–/(+) 1,20 
Efficiency – -0,80 
Maintainability –/(+) -0,21 

Reflection 

Usability 

 

– -1,67 
 

Table 21 - Summarised comparison values 
 

Another way to verify the validity of the recommendation framework results is to compare 
the framework data against data from a related research conducted by Svahnberg and Wohlin 
[31]. Both of data is quantitative in nature so the differences can be measured in 
mathematical values. The original results of this research is attached in Appendix 1. In order 



 The role of quality requirements in software architecture design  
 

 

80 

to make these comparisons, several preparations needed to be done. First of all, Svahnberg 
and Wohlin [31] used five of total eight patterns categorised by Buschmann et al. [9] as 
architectural. These are: blackboard, layers, microkernel, model-view-controller, and pipes & 
filters. Also, recommendation framework takes into account not only the top-level quality 
attributes (characteristics) from the ISO-IEC 9126 quality model [20], but also attributes 
from the lower level (subcharacteristics). The recommendation framework does not take into 
account the functionality characteristics because of the reasons described in Chapter Five.  
Naturally, the comparison will be limited to these factors. Moreover, the research in [31] is 
based on a framework that consists of two tables: 

• Framework for Architecture Structures (FAS) which rates the ability of each 
architectural pattern to support for different quality attributes, 

• Framework for Quality Attributes (FQA) that ranks which architectural pattern is best 
situated at each of the specified quality attributes. 

Both of these framework are compared and for that purpose the data have to be once again 
normalised, but this time – without the functionality quality attribute. Then, the 
recommendation framework data is also normalised and gather in Table 22 and Table 23 
that corresponds FAS and FQA frameworks respectively. Pairs of quality attributes with 
similar values (similar results in both researches) are marked in orange colour.  
 

Microkernel Blackboard Layers MVC Pipes & Filters 

 Svahnberg RF Svahnberg RF Svahnberg RF Svahnberg RF Svahnberg RF 

Efficiency 0,183 0,244 0,214 0,201 0,074 0,023 0,063 0,049 0,257 0,273 

Usability 0,120 0,043 0,187 0,173 0,334 0,272 0,118 0,317 0,096 0,126 

Reliability 0,138 0,254 0,108 0,304 0,122 0,115 0,119 0,247 0,169 0,094 

Maintainability 0,208 0,187 0,403 0,244 0,289 0,297 0,339 0,274 0,319 0,262 

Portability 0,351 0,272 0,088 0,077 0,181 0,293 0,362 0,113 0,159 0,244 

 
Table 22 – Quantitative research results comparison on FAS 

 
 

 Microkernel Blackboard Layers MVC 
Pipes & 
Filters 

Svahnberg 0,264 0,175 0,087 0,113 0,360 Efficiency 
RF 0,324 0,199 0,029 0,059 0,388 

Svahnberg 0,914 0,113 0,250 0,408 0,137 Usability 
RF 0,051 0,151 0,306 0,334 0,158 

Svahnberg 0,126 0,142 0,318 0,190 0,224 Reliability 
RF 0,277 0,248 0,121 0,244 0,111 

Svahnberg 0,191 0,092 0,285 0,239 0,193 Maintainability 
RF 0,158 0,154 0,242 0,209 0,238 

Svahnberg 0,112 0,069 0,426 0,139 0,225 Portability 
RF 0,279 0,059 0,289 0,105 0,268 

 
Table 23 – Quantitative research results comparison on FQA 

 
 These basic examples prove to some extent the literature point of view, and hence – 
the recommendation framework validity. However, the respondents might have known these 
sources and what they say about architectural patterns in terms of their relationships with 
quality attributes. Nevertheless, architectural patterns used in the questionnaire are well-
known patterns and their benefits and liabilities are commonly recognized in practise which 
reflects to some extent the recommendation framework (RF) validity.  



 The role of quality requirements in software architecture design  
 

 

81 

 
7.6 Summary conclusions  

 
Section 4.3.2 describes the two approaches of evaluation, i.e. qualitative and 

quantitative. The qualitative information is gathered from the literature, and the quantitative 
information is represented by the recommendation framework data. The disadvantage of the 
qualitative approach is that comparing the given architectural patterns for more that one 
quality attribute, the outcome is still ‘boolean’. On the opposite, despite the quantitative data 
of the recommendation framework, there are still no means to identify the potential 
limitations for an architecture. Nevertheless, it provides better a reasoning background than 
the qualitative information.  

A number of translations and assumptions had to be made. These decrease the ability 
to make appropriate comparisons of the literature view and the recommendation framework 
values. Table 21 summarises the comparison of qualitative and quantitative information. The 
values prove to some extent the recommendations framework potential for choosing an 
architectural pattern that fulfils the desired quality attributes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

82 

 
 
 

Chapter Eight – Summary and concluding remarks 
 
 
 

8.1 Research summary 
 

The total work presented in this paper is concerned with a number of research 
activities. In order to understand the role of quality requirements in software architecture 
design a number of related concepts were presented. The first of the objectives was to define 
the software architecture in terms of its relationship with quality requirements. Chapter Two 
discusses software architecture of a software system as a set of components of the system, 
their responsibilities and interactions. Their composition allows not for addressing functional 
requirements, but also is a method for an early fulfilment of quality requirements. Views are 
also described as they are used in software architecture to exhibit different quality 
requirements important during software architecture design and evaluation (Chapter Four). 
Therefore, a good architecture is important in order to achieve the desired quality 
requirements. Attention to quality requirements is also crucial for software quality. By 
leaving them unfulfilled, the system lacks in required quality level.  

The second objective was to identify and classify quality requirements which 
influence the selection of software architectures. Chapter Three is a detailed description on 
quality requirements, where they are divided similarly by Bosch [7] and Bass et al. [2] into 
two categories: operational (observable via execution) and development (not observable via 
execution). The fulfilment of quality requirements (especially development-oriented) cannot 
be measured before the system is actually implemented. Yet, they are hard to deal with since 
they often tend to interact with each other, having positive or negative impact (section 3.2.4). 
However, during the design phase, much of the quality aspects of a system can be addressed. 
During software architecture design such requirements need to be prioritized (section 3.2.6) 
and balanced in design tradeoffs (section 3.2.7) when architects have to decide upon the 
selection of a particular software architecture solution.  

Software architecture design activity (described in Chapter Four) takes the 
requirement specification that contains both functional and quality requirements as an input, 
and results in an artefact – a software architecture. In other words, it is about converting 
requirements into software architecture that fulfils these requirements. Software architecture 
design determines whether the software architecture has fulfilled its requirements, especially 
quality requirements. There is still lack of knowledge on what was proved to be the most 
important – little practical guidance on how to manage the design activity in terms of quality 
requirements. Usually architectural design means taking steps to provide the system with 
expected functionality. However, a number of different quality attributes are also of interest 
in software architecture. These attributes are of crucial importance because they constrain 
quality requirements, which in turn constrain the design and development of software 
architecture. These considerations in Chapter Three discuss the fourth objective of this 
paper, i.e. software architecture design as a method of achieving quality requirements. 
Furthermore, this objective is continued in the discussion on patters that provide an approach 
for developing software with predefined quality requirements, and hence – high-quality 
software architectures. They document existing design knowledge and help to choose the 
most suitable solution to recurring design problems. Patterns exist in various ranges of scale 



 The role of quality requirements in software architecture design  
 

 

83 

and abstraction (section 4.2.1). Different patterns imply different design consequences, that 
includes the fulfilment of different quality requirements. This means that the different 
compositions of components and their specified responsibilities and interactions fulfil a 
number of quality attributes. However, the selection of architectural pattern(s) is only the 
first step during the software architectural design.  

Chapters Two – Four are responsible for presenting the state-of-the-art analysis. The 
findings are described in terms of the objectives concerned with the main aims of this thesis. 
Section 8.2 summarizes the literature survey and indicates relevant issues that should be 
considered as recommendations. These concluding remarks emphasize the meaning and 
importance of ensuring quality requirements in architectural design. 
 
 

8.2 Proposed solutions 
 

Systems are built to satisfy their requirements. Software architecture design 
determines ensures that the fulfilment of system requirements by the software architecture. 
There is still lack of knowledge and what matters the most – little practical guidance on how 
to manage the design activity towards the achievement of quality requirements. Usually 
design means taking steps to provide the system with its expected functionality. However, as 
it was proved, to ensure the required level of software quality a system must fulfil also 
quality requirements.  Therefore, this paper has proposed a requirement-oriented design 
method in section 4.4. It should be considered as an outcome of the literature review since 
these results revealed the gap between quality requirements and software architecture. 
Having reviewed important aspects of several software architecture design methods, little but 
not sufficient attention is paid to govern the design towards the fulfilment of quality 
requirements. The proposed method is inspired by an important breakthrough in this area, i.e. 
Bosch design method [7]. In opposite to Bosch, this design process starts with a design of a 
preliminary version of the software architecture based on quality requirements specified in 
requirements specification. The objective of this model is to design a software architecture 
that targets both requirements types of a system. In general, these quality requirements 
strategies involve of ensuring the existence or a specified order (decomposition) of one or 
more components (mechanisms) that fulfil desired attributes of a system. It is also worth to 
mention that all of these abstract from the system functional requirements. Therefore, the 
proposed method find its usage in software architecture design activities.  
 
The method is aimed towards: 

• design software architecture that targets both types of requirements 
• fill the gap of quality requirements in software architecture design, 
• ensure software high quality compared to the resources used in architectural design. 

 
The benefits and general features of this approach in comparison to Bosch include:  

• less modification-prone, i.e. avoids modifications caused by the lack of QRs during 
the functionality-oriented design, 

• early fulfilment of the top abstraction level (global) QRs, 
• addresses QRs before the core functionality is placed, 
• saves efforts due to the smaller number of QRs evaluations 
• considers FRs variability caused by QRs ensuring  procedures, 
• allows  for sacrificing FRs in order to meet QRs, 
• similar development progress – FRs & QRs are fulfilled comparatively. 



 The role of quality requirements in software architecture design  
 

 

84 

Besides the conceptual design considerations, this research also presents a practical 
solution to the identified problems. Architectural patterns from [9] represent the highest-level 
patterns. They are used to specify the fundamental architectural structure. Every development 
activity that follows is governed by this structure [9]. The selection of an architectural pattern 
is greatly influenced by the quality requirements of a system. That is why they have been 
chosen for the proposed Recommendation Framework (Chapter Six) that is a systematic 
approach of fulfilling quality requirements during software architecture design stage. This 
helps to systematically guide selection among design alternatives. It selects the most suitable 
architectural pattern from a set of given quality attributes. The idea of such solution 
originates from the observation of certain architectural structures to predict the quality 
attributes they affect [30]. Although the literature [7] and [9] provides benefits and liabilities 
of a certain pattern, the qualitative nature of the information does not allow for equal 
measurements and comparisons. Hence, an empirical research was conducted to obtain the 
required data for the proposed method. Based on the questionnaire quantitative outcomes, an 
automated design support is created. Chapter Seven discusses the framework’s validity. 
Despite the solution reliability, it is a step forward in designing towards quality requirements.  

The recommendation framework uses patterns categorised as architectural besides 
design patterns and idioms also specified in [9]. These patterns are divided with respect to 
their range of scale and abstraction. Different quality requirements are addressed at different 
abstraction levels. The first proposed model is a quality requirement-oriented design method, 
where quality requirements are taken into account at first during a software architecture 
design. The recommendation framework is considered as a practical illustration of such an 
approach. However, it concentrates on architectural patterns that express the fundamental 
structure and hence, the quality requirements of the highest-abstraction level. These 
considerations and the lack of a support for achieving quality requirements at all design 
levels resulted in a third, last proposal method of this thesis – a quality requirement-oriented 
and pattern-based design method described in section 6.7. This method is proposed to deal 
with the quality requirements at all abstraction levels specified by patters in [9]. 
 
 

8.3 Conclusions 
  

Software engineers used to provide systems that concentrate on the required system 
behaviour, i.e. functional requirements. Today the software market is full of applications with 
similar functionality, and the factor that differs an application from another is its quality 
level. As it was proved in this thesis, the level of quality depends greatly on the achievement 
of quality requirements. This means that the fulfilment of quality requirements  set the 
boundaries for the total software quality of a system. Therefore, in order to select the best 
solution from comparable (similar) applications, one has to take into consideration how, and 
to what degree these applications fulfil the desired quality requirements. This should results 
in increased customer satisfaction.  

As it was indicated in Chapter Three quality requirements may affect one part of an 
application or a system as a whole. To underline their importance it should be stated that 
functional requirements may need to be sacrificed in order to meet the system quality 
requirements, and in result – the product goals. This is because the lack of a system service (a 
functional requirement) may degree the system usability, while leaving a quality requirement 
unfulfilled can make the system totally useless [28].  

The designed system itself has an impact on quality requirements. The larger the 
system is developed, the more crucial quality requirements of such system are. This means 
that the importance of quality requirements increases with the size of a designed system. 



 The role of quality requirements in software architecture design  
 

 

85 

Similarly with complexity – the more complex system is, the more attention is paid to quality 
requirements and their fulfilment. Chapter Three presented how quality requirements are 
divided (development and operational). These categories also influence the software 
architecture design. First of all, operational-oriented quality requirements are in most cases 
impossible to incorporate at the software architecture level as they can be observed and 
measured during the system execution. What is extremely important that the cost of 
incorporating quality requirements into a system that has been developed absorbs a lot of 
resources such as schedule or budget costs. Therefore, it is important to ensure the fulfilment 
of quality requirements as soon as possible to avoid such resource penalties.  

The research presented in this thesis benefits in a better understanding of quality 
requirement-related issues. It lays out quality requirements in such a way that they can 
govern architectural decisions and be used to evaluate the architecture. This thesis proposes a 
quantitative approach for achieving software product quality. This might be a step forward 
towards the systematization of design methods and quality requirement-oriented approach of 
architectural designs. The research focused on analysis of software architectures against one 
or more desired software qualities that ought to be achieved at the architectural level.  
 
 

8.4 Concluding remarks 
 

While the previous section summarised what has been done, this part indicates 
relevant concepts described in this thesis. These are the state-of-the-art findings that ought to 
be considered as recommendations. They are presented informally to increase attention and 
avoid potential misunderstanding in the area of quality requirements in software architecture 
design. 

Software architecture design (Chapter Two and Four) is not concerned with the 
design of algorithms and data structures. It is commonly agreed that software architecture 
design of a system is: 

• a high-level system design beyond the algorithms and data structures of the 
computation 

• an overall organization of elements and their relations (components and connectors) 
• a coherent combination of views that describe the system features from different 

perspectives 
• a set of fundamental design decisions that establish a system topology and 

vocabulary. 

 
Conclusion 2. The design process of achieving system requirements via architectural 

means is called software architecture design and results in an artefact 
called software architecture. 

 
Software architecture is often separated into multiple views that present the system features 
from different perspectives. One view presents various quality requirements that may be 
invisible via others. Views reduce the complexity and help to make decisions about trade-
offs. Views are represented by a number of notations such as Unified Modelling Language 
(UML) considered as one of Architecture Description Languages (ADLs).  

Conclusion 1. Software architecture is a structure that illuminates the top-level design 
decisions. It governs the system decomposition into interacting parts as 
results of design decisions towards the fulfilment of system requirements. 



 The role of quality requirements in software architecture design  
 

 

86 

The design process is not only governed by functional requirements, but also by quality 
requirements [2][7][9][16]. Functional requirements capture the intended behaviour of a 
system (services or tasks to perform), while the quality requirements impose constrains or 
restrictions on the software product and the development process [12].  
 

 
Quality requirements affect either one part of an application or the system as a whole. In 
some cases, functional requirements have to be sacrificed in order to meet the quality 
requirements, and in result – the product goals. A lack of a functional requirement (a system 
service) may degree the system usability, while not covering a quality requirement could 
make the system totally useless [13].  

Functional requirements are usually captured with UML’s use-cases, analyzed by 
sequence diagrams, statecharts, etc. Quality requirements are often specified as a part of 
functional requirements, e.g. “The system shall be able to present a response message no 
later than 3 seconds”. In other words, quality requirements determine overall constrains on 
the functionality. 
 

 
A software system has many characteristics, e.g. maintainability, reliability usability. The 
quality of each of these characteristics determine the total software quality. Each 
characteristic can be specified as an attribute of the system if a metric is given to verify that 
the architecture addresses the quality.  
 

 
Quality requirements determine the quality attributes of a system by placing constraints. 
These are usually specific values, a scope, or ranges of values for quality attributes. 
 

 
Quality attributes are categorised into development and operational [7]. Development quality 
requirements are attributes relevant from a developer perspective, e.g. maintainability, 
portability. Operational quality requirements are noticeable and measurable on the system in 
operation, e.g. efficiency, security, usability. 

It is important to understand the potential relationships between quality attributes, 
especially conflicts (section 3.2.4). It allows for monitoring how different quality attributes 
interact with each other. It is especially important to examine potential conflicts in order to 
minimize the inappropriate design decisions.  
 

 
One way to design a software system is to start with a pattern. Patterns describe a set 

of components, their relationships and the required constraints, the rationale for their 
cooperation, and the software qualities they provide. Buschmann et al. [9] categorized 

Conclusion 3. FRs describe what a system does, whereas QRs put constrains on how 
these FRs are ought to be implemented. 

Conclusion 4. Quality requirements = Functional requirements + Constrains 

Conclusion 5. Quality attributes  are measurable or observable properties of a system 
that have some qualitative or quantitative value. 

Conclusion 6. Quality requirements = Quality attributes + Constrains 

Conclusion 7. Quality attributes often interact each other positively or negatively. 



 The role of quality requirements in software architecture design  
 

 

87 

patterns according to their level of abstraction. Architectural patterns are concerned with the 
fundamental structure of a system. Design patterns are concerned with smaller architectural 
units such as subsystems or components. In opposite to design patterns, idioms are language 
specific patterns that concern implementation matters of particular design issues. 
 

 
Software architecture design should determine whether the design result, i.e. software 
architecture, has fulfilled the (quality) requirements. Software architecture evaluation is 
performed to measure quality attributes, so these can be compared to the quality requirements 
from the requirements specification. The main purpose of architectural evaluations is to asses 
the quality attributes of a system during the design – without having a concrete system 
available. Different approaches for assessing quality requirements have been identified such 
as scenarios, simulation, and mathematical modelling [7].  
 

 
One of the major issues in software systems development today is quality. The notion of 
software architecture determines the level for dealing with software quality. This is because 
the overall quality of a system depends on the fulfilment of system requirements. 

 

 
Little, but not sufficient research has been done to design software architecture from quality 
requirements. Although there has been some interaction investigated by the literature 
[3][4][9][44], but the task still remains difficult.  
 
 

8.5 Future work 
 

The author may wish to consider possible further regarding the software architecture 
design in terms of quality-related issues. In particular, there are several aims of future work 
described as follows. 

Unified Modelling Language (UML) is often used as an Architectural Description 
Language (ADL). Although it describes detailed design decision, it is also used to manifest 
the high-level software architecture design. However, UML does not specify the boundary 
between the designs at different abstraction levels. While UML emerged from object-
oriented designs, it commonly supports various-level designs. Confusion exists since a 
software architect cannot distinguish between architectural information (high-level design 
decisions and artefacts), and other types of information. 
The aim is to specify the difference between using UML for software architecture and the 
more common use of designing applications with UML. This should results in a proposal of 
an UML usage for high-level and detailed software design. 

Software architecture design is worth nothing without requirements engineering – the 
first activity in software development life cycle. The path to fulfilling quality requirements 
begins with eliciting, verifying, documenting and generally – managing quality requirements. 

Conclusion 8. Patterns address some quality attributes at various abstraction levels. 

Conclusion 9. Architecture evaluation measures how well the architecture addresses 
quality requirements of the system. 

Conclusion 10. Software quality is governed by the level of quality requirements 
fulfilment.  



 The role of quality requirements in software architecture design  
 

 

88 

As this paper indicated - insufficient time and effort are spent on the quality requirement-
related activities associated with the gathering quality requirements for the use of 
architectural design. Many software requirements specifications (also called software 
requirements documents), are either full of badly written (quality) requirements or do not 
specify them at all. In order to meet them properly by the software architecture, they need to 
be precisely specified during requirements engineering. UML use-case models are commonly 
used to express functional requirements, whereas quality requirements are specified as 
footnotes or supplementary text. Further work also aims towards improvements in eliciting, 
analyzing and verifying quality requirements. This might result in extending an ADL for 
software architecture to deal with quality requirements. A possible target is the Unified 
Modelling Language (UML). 

An important issue in this research is the concept of interdependencies among quality 
attributes (section 3.2.4). Quality attributes often influence each other, either strengthen (e.g. 
security and safety) or hinder (e.g. efficiency and maintainability). In order to address a set of 
desired quality attributes in software architecture design, their relationship has to be 
recognized. Future work aims also includes identifying, specifying and testing quality 
attributes interdependencies.  

An empirical research was conducted to collect the data required for the 
recommendation framework (Chapter Six). The literature such as [7][9] provides some 
dependencies between quality attributes and software architecture structures, especially 
patterns. However, a number of quality attribute impact is not recognized. Future study aims 
also identifying these missing relationships. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

89 

 
 
 

References 
 

 
 
[1] S. T. Albin, The Art of Software Architecture: Design Methods and Techniques, John 
Wiley and Sons, 2003. 
  
[2] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison Wesley 
Longman, 1998. 
 
[3] L. Bass, M. Klein, F. Bachmann, Quality Attribute Design Primitives, Technical Note 
CMU/SEI-2000-TN-017, 2000. 
 
[4] P. Bengtsson, Architecture-Level Modifiability Analysis, Doctoral Dissertation Series No. 
2002-2, Blekinge Institute of Technology, 2002. 
 
[5] P. Bengtsson, Software Architecture - Design and Evaluation, Research Report 10/99, 
Blekinge Institute of Technology, 1999. 
 
[6] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. McLeod, M. Merritt, Characteristics of 
Software Quality, North Holland, 1978. 
 
[7] J. Bosch, Design and Use of Software Architectures. Adopting and Evolving a Product-
Line Approach, Addison-Wesley, 2000. 
 
[8] M. Bray, M. Ross, G. Staples, Software Quality Management IV: Improving Quality, 
Mechanical Engineering Publications, 1996. 
 
[9] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented 
Software Architecture. A System of Patterns, John Wiley and Sons, 1996. 
 
[10] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional Requirements in 
Software Engineering, Kluwer Academic Publishing, 1999. 
 
[11] L. M. Cysneiros, J.C.S.P Leite, Non-Functional Requirements: From Elicitation to 
Conceptual Model, IEEE Transactions on Software Engineering, May 2004. 
 
[12] L. Dobrica, E. Niemela, A Survey on Software Architecture Analysis Methods, IEEE 
Transactions on Software Engineering, Vol. 28, No. 7, 2002. 
 
[13] A. Eden, R. Kazman, Architecture, Design, Implementation, Proceedings of the 25th 
International Conference on. Software Engineering (ICSE 25), 2003. 
 
[14] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of Object-
Oriented Software, Addison-Wesley, 1994. 
 



 The role of quality requirements in software architecture design  
 

 

90 

 
[15] D. Gross, E. Yu, From Non-Functional Requirements to Design through Patterns, 
Requirements Engineering, Vol. 6, No. 1, pp. 18-36, February 2001. 
 
[16] C. Hofmeister, R. Nord, D. Soni, Applied Software Architecture, Addison-Wesley, 2000. 
 
[17] Institute of Electrical and Electronics Engineers, IEEE Standard 1061-1998:  
A Standard for a Software Quality Metrics Methodology, New York, 1998.  
 
[18] Institute of Electrical and Electronics Engineers, IEEE Standard 610.12-1990: IEEE 
Standard Glossary of Software Engineering Terminology, New York, 1990. 
 
[19] International Standards Organization, Reference Model for Open Distributed 
Processing, International Standard 10746-1, ITU Recommendation X.901, 1996. 
 
[20] International Standards Organization, Software Engineering - Product Quality, Parts 1 – 
4, ISO/IEC 9126, 2001. 
 
[21] R. Kazman, M. Klein, P. Clements, ATAM: Method for Architecture Evaluation, 
CMU/SEI-2000-TR-004, ADA382629, Software Engineering Institute, 2000. 
 
[22] P. Kruchten, The “4+1” View Model of Software Architecture, IEEE Software 12 no. 6, 
pp. 42-50, 1995. 
 
[23] P. Lalanda, S. Cherki, Object-oriented methods and software architecture, Proceedings 
of the ECOOP'98 on Object-Oriented Software Architectures, Blekinge Institute of 
Technology, 1998. 
 
[24] L. Lundberg, M. Mattsson, C. Wohlin, Software quality attributes and trade-offs, 
Blekinge Institute of Technology, 2005. 
 
[25] J.A. McCall, Quality Factors, Encyclopaedia of Software Engineering, John Wiley and 
Sons, 1994. 
 
[26] J. A. McCall, P. K. Richards, G. F. Walters, Factors in Software Quality, Technical 
Report (RADC)-TR-77-369, NTIS, Volumes I, II, III, 1977  
 
[27] I. Sommerville, G. Kotonya, Requirements Engineering: Processes and Techniques, 
John Wiley and Sons, 1998.  
 
[28] I. Sommerville, Software Engineering, 6th edition, Addison Wesley, 2000.  
 
[29] M. Svahnberg, C. Wohlin, A Comparative Study of Quantitative and Qualitative Views 
of Software Architectures,  Proceedings of the 7th International Conference on Empirical 
Assessment in Software Engineering (EASE 2003). 
 
[30] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mattsson, A Method for Understanding 
Quality Attributes in Software Architecture Structures, Proceedings of the 14th International 
Conference on Software Engineering Decision Support, (SEKE 2002). 
 



 The role of quality requirements in software architecture design  
 

 

91 

[31] M. Svahnberg, C. Wohlin, An Investigation of a Method for Identifying a Software 
Architecture Candidate with respect to Quality Attributes, Empirical Software Engineering, 
10, 149–181, 2005. 
 
[32] M. Svahnberg, C. Wohlin, Consensus Building when Comparing Software 
Architectures, Proceedings of the 4th International Conference on Product Focused Software 
Process Improvement (PROFES 2002). 
 
[33] UML 2.0 Superstructure – Final Adopted Specification, OMG document ptc/03-08-02, 
2002. 
 
[34] K. E. Wiegers, Software Requirements, Microsoft Corporation, 2000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

92 

 
 
 

Appendix 1  
 
 

 
 

 
 

Table 24 - Framework for Architecture Structures (FAS) [31] 
 
 
 

 
 

Table 25 - Framework for Quality Attributes (FQA) [31] 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

93 

 
 
 

Appendix 2 – Questionnaire 
 

 
 

Questionnaire 
 

This is an anonymous questionnaire about the role of Quality Requirements (also 
referred as Non-Functional Requirements) in software architecture design. It will be very 
important and helpful for my research if you could spend a few minutes answering the 
questions below. Please complete the questionnaire honestly at the best you can. 
 
A. Benefits of the research and your participation: 
 
1. You will be given the results and conclusions. 
2. The solution of this research may help in your future designs. 
3. Opportunity to help in an academic experiment. 
4. Your participation will provide results that may impact software engineering education. 
 
B. General information 
 
1. Have you taken participation in software architecture design? 
 

� Yes                  � No 
     
2. If yes, specify more or less how many times:  
 
3. How do you grade your knowledge about quality (non-functional) requirements? 
 

1 2 3 4 5 6 7 8 9 10 
Any Bad Poor Below 

average 
Average Above 

average 
Good Very 

good 
Superb Excellent 

 
4. Do you take into account quality requirements (besides the functionality of a system) in 
your designs? 
 

� Yes                  � No 
 
5. How do you grade your knowledge about patterns? 
 

1 2 3 4 5 6 7 8 9 10 
Any Bad Poor Below 

average 
Average Above 

average 
Good Very 

good 
Superb Excellent 

 
 



 The role of quality requirements in software architecture design  
 

 

94 

C. Architectural Patterns and Quality Attributes 
 

This research is an attempt of creating a recommendation framework. It shall provide 
an automated support in choosing the most suitable software architecture description for the 
given quality attributes. These attributes come from quality (non-functional) requirements 
that constrain a software system. Your answers will help to gather the required data, based 
on which the transformation from quality requirements into a architectural pattern will be 
created. 
 
Reminders to: 
 

1) Architectural Patterns: http://www.student.bth.se/~kkwn05/architectural_patterns.htm 
 

2) Quality Attributes:  
http://www.student.bth.se/~kkwn05/quality_attributes.htm 
 

available through the website. 
 
Legend for the assessment: 
 
Grade: Explanation: 

+2 High positive impact of a quality attribute on an architectural pattern. 
+1 Positive impact of a quality attribute on an architectural pattern. 
  0 Passive impact (neither benefit nor liability). 
-1 Negative impact of a quality attribute on an architectural pattern. 
-2 High negative impact of a quality attribute on an architectural pattern. 

 
 
Thank you for your cooperation! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 The role of quality requirements in software architecture design  
 

 

95 

1. Layers 
1.1. How do you grade your familiarity with the layered pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

1.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

1.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

1.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

1.3. Usability 
Understandability 

Learnability 
Operability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

1.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

 
 

2. Pipes and Filters 
2.1. How do you grade your familiarity with the pipes and filters 
pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

2.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

2.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

2.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

2.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

2.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  



 The role of quality requirements in software architecture design  
 

 

96 

3. Blackboard 
3.1. How do you grade your familiarity with the blackboard pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

3.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

3.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

3.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

3.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

3.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

 
 

4. Broker  
4.1. How do you grade your familiarity with the broker pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

4.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

4.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

4.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

4.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

4.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  



 The role of quality requirements in software architecture design  
 

 

97 

5. Model-View-Controller  
5.1. How do you grade your familiarity with the MVC  pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

5.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

5.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

5.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

5.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

5.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

 
 

6. Presentation-Abstraction-Control 
6.1. How do you grade your familiarity with the PAC pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

6.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

6.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

6.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

6.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

6.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  



 The role of quality requirements in software architecture design  
 

 

98 

7. Microkernel 
7.1. How do you grade your familiarity with the microkernel pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

7.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

7.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

7.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

7.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

7.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

 

8. Reflection 
8.1. How do you grade your familiarity with the reflection pattern?  

1 2 3 4 5 
None Poor Average Good Excellent  

8.4. Maintainability 
Analysability  
Changeability 

Stability 
Testability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

8.2. Reliability 
Maturity 

Fault tolerance 
Recoverability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

8.5. Efficiency 
Time behaviour 

Resource utilisation 
 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

8.3. Usability 
Understandability 

Learnability 
Operability 

 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

8.6. Portability 
Adaptability 
Installability 
Co-existence 

Replaceability 

 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2 
-2 -1 0 +1 +2  

 


