Master Thesis &Q‘lek‘l

Software Engineering & wetSes %
Thesis no: MSE-2006:14 U Gaaassss &
< wennasssss
June 2006 ;n===n-===- >
= =
)0 S
[ ] BT“ [ ]

The role of quality requirements
In software architecture design

Karol Kazimierz Wnukiewicz

School of Engineering

Blekinge Institute of Technology
Box 520

SE — 372 25 Ronneby

Sweden



This thesis is subitted to the School of Engineering at Blekinge itus¢ of Technology i
partial fulfilment of the requirements for the degrof Master of Science in Softw
Engineering. The thesis is equivalent to 20 wedHKslbtime studies.

Contact Information:

Author:

Karol Kazimierz Wnukiewicz

E-mail: kkwnO5@student.bth.se

Web: http://www.student.bth.se/~kkwn05

External advisor:

Zbigniew Huzar

Wroclaw University of Technology
Wybrzeze Wyspianskiego 27

50-370 Wroclaw, Poland

E-mail: Zbigniew.Huzar@ pwr.wroc.pl

University advisor:

Mikael Svahnberg

Department of Systems and Software Engineering
E-mail: Mikael.Svahnberg@bth.se

School of Engineering Internet

Blekinge Institute of Technology www.bth.se/tek

Box 520 Phone : +46 457 38 50 00
SE - 372 25 Ronneby Fax :+46457 27125

Sweden



He nodded, he shrugged. He shrugged again.
"A what?" he said

"An S.E.P"

"An S... ?"

"...E.P."

"And what's that?'

Douglas Adamd,ife, the Universe, and Everything




The role of quality requirements in software architecesign i

Abstract

An important issue during architectural desigrhist tbesides functional requirements,
software architecture is influenced greatly by gyakequirements [9][2][7], which often are
neglected. The earlier quality requirements aresiciemed, the less effort is needed later in the
software lifecycle to ensure a sufficient softwarglity levels. Errors due to lack of their
fulfilment are the most expensive and difficult ¢orrect. Therefore, attention to quality
requirements is crucial during an architecturaliglesThe problem is not only to gather the
system’s quality requirements, but to establishedhadology that helps to deal with them
during the software development. Literature hasl game attention to software architecture
in the context of quality requirements, but therstill lack of effective solutions in this area.

To alleviate the problem, this paper lays out intgar concepts and notions of quality
requirements in a way they can be used to drivigdetecisions and evaluate the architecture
to estimate whether these requirements are fulfilltmportant concepts of software
architecture area are presented to indicate hoveritapt quality requirements are during the
design and what are the consequences of theirnaaglsoftware system. Moreover, a quality
requirement-oriented design method is proposedasutcome of the literature survey. This
method is a model taking quality requirements imicount at first, before the core
functionality is placed.

Besides the conceptual solution to the identifieabfems, this paper also suggests a
practical method of handling quality requirementsimy a design. A recommendation
framework for choosing the most suitable architedtpattern from a set of quality attributes
is also proposed. Since the literature providesifiitsent qualitative information about
quality requirement issues in terms of softwarehigéectures, an empirical research is
conducted as means for gathering the required déterefore, a systematic approach to
support and analyze architectural designs in teofguality requirements is prepared.
Finally, quality requirement-oriented and patteaséd design method is further proposed as
a result of investigating patterns as a tool fodradsing quality requirements at different
abstraction levels of a design. The research icaroed with the analysis of software
architectures against one or more desired softyaadities that ought to be achieved at the
architectural level.

Keywords: Non-functional requirements, patterns, quality ribtites, quality models,
architectural design, architecture evaluation.



The role of quality requirements in software architecesign iii

Streszczenie

Proces projektowania architektury systemu inforrmatggo jest determinowany nie
tylko przez wymagania funkcjonalne, lecz rowniprzez wymagania niefunkcjonalne
[9][2][7] formutowane podczas analizy wymagaSpecyfikacja wymagaczesto pomija w
opisie te wymagania, ktad catkowity nacisk na funkcjonalé@

Projektanci winni jednak aty¢ do uzyskania systemu informatycznego, ktéregoksira
odzwierciedlataby oba typy wymagav danej dziedzinie problemu. Im wéneej brane s
pod uwag wymagania niefunkcjonalne, tym wszy poziom kacowe] jakdci
oprogramowania zostanie uzyskany. Wysitki zzgine z uzyskaniem nieaghigtej jakasci
systemu g bardzo kosztowne, a efekty trudne dagsiecia. Std uwaga nad wymaganiami
niefunkcjonalnymi jest konieczna podczas projektoaaarchitektury. Problem nie polega
tylko na wigciwej specyfikacji tych wymagda ale réwnie na ustanowieniu metodyki, ktéra
pozwoli na ich realizagj Literatura péwigca troclk uwagi projektowaniu systeméw w
kontelscie wymaga niefunkcjonalnych, jednale wchz brak jest efektywnych rozazan w
tej dziedzinie.

Praca przedstawia roli charakter wymaga niefunkcjonalnych w kontekie
czynnikéw majcych wplyw na decyzje procesu projektowania aréiitey i jej p&zniejsz
ocerg wyznaczajca poziom spetnienia tych wymagaPonadto, zagadnienia zwane z
architektug systemu informatycznego zoséaprzedstawione by ok§k¢ istoe wymaga
niefunkcjonalnych oraz konsekwencje, jakieykgisi¢ z ich brakiem. Praca proponuje model
projektowy (angguality requirement-oriented design methgako rezultat przegtlu sztuki,
w ktorym wymagania niefunkcjonalne brarngpmod uwag w pierwszej kolejngci, tj. przed
wymaganiami funkcjonalnymi.

Nastpnie, aby zilustrow&a to podejcie, praca przedstawia praktygzmealizacg
omawianego problemu. Ze wedlu na brak informaciji w literaturze, ktore moghypystuzy¢
w tym nowatorskim podégiu, dane zostaly skompletowane na podstawie emgmgch
bada. Dzieki tym pomiarom powstat tzwRecommendation Framewgrkzyli narzdzie
wspomagajce proces projektowania architektury, ktére na Wi paadanych
charakterystyk jaki w oparciu o zbiér wymaga niefunkcjonalnych dokonuje wyboru
architektury sytemu zdefiniowanej ze zbioru wzorgiwjektowych. W kolejnej eZci praca
opisuje model procesu projektowania, ktory podolale poprzedni jest zorientowany na
wymagania niefunkcjonalnie. Jedriakta propozycja (angjuality requirement-oriented and
pattern-based design methodvykorzystuje wzorce projektowane znicowane pod
wzgledem poziomu abstrakcji systemu, na jakim magpstd wykorzystane. Badania
prowadzone w tej pracy mgjna celu analig procesu projektowania systeméw
informatycznych ukierunkowanego na spetnienie jgdriab kilku charakterystyk jalkoi.

Stowa kluczowe: Wymagania niefunkcjonalne, architektura sytemuorimiatycznego,
projektowanie, wzorce projektowe, modele j&kowe, charakterystyki jakoi, jakaos¢
oprogramowania.



The role of quality requirements in software architecesign iv

Acknowledgements

First and foremost, | would like express my sincgratitude and appreciation to my
advisors Zbigniew Huzar and Mikael Svahnberg fairtiknowledge and patience. Without
their assistance this research could not have templeted.

| am also grateful to my parents, Kazimierz and Heratheir support and love, my
sisters Alicja and Malgorzata, my god-son Jakubldaadather — my brother-in-law Jacek.

In addition, special thanks are addressed to ttexviewed people who spent their
precious time on answering the questionnaire, fairtinterest and effort during the
evaluation.

My thanks to them all.

Karol Kazimierz Wnukiewicz



The role of quality requirements in software architecesign

v
Table of contents
Chapter One — INtrodUCTION..........coviiiiiiiiimmm e e e e 1
1.1 Background Of the STUAY ..........uuuuuiiiiiie et eeeneenne 1
1.2 AIMS QN ODJECHIVES.......uuiiiiie i 1
1.3 ValUE OF the STUAY ....eeeeiiiiieeii et e e e e eeaeeas 2
1.4 Research scope and IMItatioNS ............cociiiiiiiiiie e 2
1.5 StrucCture Of thiS STUAY .......cooii i eeee e 3
Chapter Two — Software ArchiteCture ...........cocceeeeei i 4
P2 R [ ] (o To [F ot o] o [T PPPPPPPP PP 4
2.2 DIINILION ...t ettt e e e e e e e e s e e e e e e e 4
2.3 COMMON EIEBMENTS ...ttt ettt e e e e e e s e e e e e e e e s 5
2.4 Architecture Description LanQUAagES.......ccuuueieeeieeeiieieiiiiiee ettt eeeeneeeeeeees 6
2.5 VIBWS... ittt ettt oot e e e e e e R R R R e e e e e e e e e e e e 6
b2 300 R 1 0 T ¥ Tox 1 o] o P 6
2.5.2 RM-ODP... et et e ettt ee e e e e e e e e et e e e e eeeee 7
2.5.3The “4+1" VIEW MOUEL.......ccceiiiiiiiitmmmmm s eeee e e e e e e et e e e e et et e e eeeeeeeeeeeeeeaeees 8
2.5.4 Hofmeister et al. design Method.......ccccooeiiiiiiiiiiii e 8
2.5.5 SumMmary and remMarksS...........ouooo o iocceeeeiee e 9
2.6 Software reqUIrEMENES..........ccoo i i 9
2.7 Styles and patterns in Software ArchiteCture ..., 10
2.8 SUMMArY @Nd FEMATKS ....uuuuiiiieiieiee e e e e e e e e e e e e e e e ettt eeeeaeeeeeeeeeannes 10
Chapter Three — Quality RequUIrements ...........occevvviviiieeiiiiiiiine e 12
3.1 SOMWAIE QUAIILY......eeeeieeeeeieiiit et e e e e e e e e e e e e e e aaans 12
3.2 Quality REQUITEMENTS .....ciiiiiiiiiiiiit ettt e e e e e e e e eeas 13
7200 R 1 0 T U Tox 1 o] o IR 13
3.2.2 Definition and CONCEPL ........uuiiiiiiimmmeeiiiie e e et e e e 13
3.2.3 Quality AMIDULES ...t e e 13
3.2.4 Quality Attribute IMPACL..........cooviiiiieiieiiieeee e 14
3.2.5 Quality requirements CatEgOrieS ....... e eeeeeieiiiiiieieeeeeeeee e e eeee e 15
3.2.6 PrIONMEIZALION ... 16
B.2.7 Trade-0ffS ..o 16
3.2.8 Quality Requirements iN PracCtiSE...... e oaeiiriieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeees 17
3.2.9 Summary and remMarksS............oooii oo 18
3.3 QUANILY MOAEIS......coiiiiteee e e e e e e e e e e e e e 19
G0 700 I 1 0 T ¥ Tox 1T o IR 19
3.3.2 McCall's Quality MOEL..........cccuiiiimmmm e 19

3.3.3 Boehm’s Quality MOEl...........ccooiiiiiiii e 20



The role of quality requirements in software architecesign Vi

3.3 4 FURPS/FURPSH ...ttt emmmmeee ettt e e s 20
3.3.5ISO/IEC 9126 Quality MOUEl..........uei e 21
3.3.6 ISO/IEC 9126 MELIICS ..ceoueeeeeeeeeeeeeeeee e e e ettt et e e et e e e s eeeeeaneeeee e 24
3.3.7 Summary and remMarksS............oooi oo 25
Chapter Four — Architectural Design and Evaluation................ccccccceeeene, 27
g I {1 o o [ Tox 1 o o USSR 27
- L1 = 1 29
4.2.1 Definitions and CategOri€s ...........cooiiiiiiiiiiii e 29
4.2.2 WHY PatEINS? ...eeiiiiiieie et e e e et ettt e e e e reennneeeseseeesnnannes 30
4.2.3 Why Architectural PatternNS?..........cooeviuiiiiiiiiiiiiie e, 31
4.2.4 Architectural PAtternsS ............ueiiiieeccce e 31
4.2.5 Architectural Pattern CategOriesS.......ccceeeiiiiiiiiiiiiiiiiiiiiiiiiiiineenineeeeeeee 32
4.2.6 SUMMAry and remMarksS...........uueeeiiioooo i 32
4.3 Software Architecture EValUation ............cccoeoeeeeeiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 34
4.3.1. EVAlIUALION tNEOIY ....eiiiiiiiiiiee ettt e e 34
4.3.2 AIMS Of @SSESSIMENT ....cciiiii i enannnnnes 34
4.3.3 Techniques for Architectural ASSESSMENL............cevvvvivvreiiiiiiiiiiie e 35
4.3.4 SUMMAry and reMArKS........ccciiiiiiiicccccce e e e e e e ananareeaannnne 39
4.4 Quality requirement-oriented design Method ..............ooovvvvviiiiiiiiic e 40
AL INITOUCTION ...ttt e erme e e e e 40
4.4.2 Bosch design method in CONEXE .......uueeeeeeieiiiiiiiiieecceeeeeeiii e 40
4.4.3 MethOd ACHIVILIES ...t et e e e 41
4.4.4 MethOd @XAMPIE ......uiiiiiiiiiiee e ceeeeee et a e e 42
4.4.5 Benefits and labilitieS ..........coo oo 43
4.4.6 SUMMArY and reMArKS...........uueiiiii e e e 44
Chapter Five — Empirical approach............ccoomeveeiiiiiiieeiiiiie e 46
to Recommendation Framework preparation.........cc..veeeeeeeeeeiiieeeeeeeennnnnn. 46
TR Y 10 [0 | VA0 =3 [ [ I 46
5.1.1 EMPIFCal FESEAICN ......oiiiiiiiiiiiiet e oottt ettt ennnneeseeeneennnnn 46
5.1.2 AIMS and ODJECHIVES .......cooii e e a7
5.1.3 QUESLIONNAIIE ESIGN...cciiiiiiiiit s ettt e e e e e e e s e e e e e e s eeeeasrreeeeeeeeens 47
5.1.4 Summary and remMarksS............oooi oo 48
5.2 ANAIYSIS 8N FESUILS........uuiiiiiiiiiie et e e 49
o200 R 1 1 0 T U Tox 1 o] o R 49
5.2.2 RESEArCH dOMAIN .......uiiiiiiiiie e e e 49
5.2.3 QUESLIONNAINE FESUILS ... .ccevviii it ceeeeeer et e e e e a b eee e e e e e e esraaaaes 50
5.2.4 Data @nalySiS........cooiiiiiiiiiiiiiiiceeeee e —————————————— 50
5.2.5 Validity and threatS .............ooovviieemmmre et s 52
5.3 Conclusions and fiNdINGS .........cooiviiiiiceemi e e e e 53
Chapter Six — Recommendation Framework..........ccccccciiiieiniiis 55
00 I 1 0 T ¥ Tod 1 0] o I 55
6.2 Background philoSOPRNY ..........uuiiiiiiiiiii e 55
6.3 SUpPOrt fOr deSIgN ACHIVILY .......ooiiiiiiieeeiiie et e e e 56

6.4 Requirements variability and management.................ooovvvviiiiiiiiiiiiveii s 57



The role of quality requirements in software architecesign Vii

6.5 MEthOd ACHVILIES .....ceoiiiiiiiee et 58
6.6 Benefits and abilItieS ............ooiiiiiim et 62
6.7 Quality requirement-oriented and pattern-baseddesign method ..........cccccevvvvvvvnnnnns 63
B.7. 1 INErOTUCTION ...ttt e e e e r e e e e e eeeeas 63
6.7.2 Top-down vs. bottom-up design appProach..............eeeeeeieeeeeriiiiiiiiiiiieeeeeennss 64
6.7.3 MEthOd ACHIVILIES .......uuieiiiiiiiie ettt e e eeeaeeas 65
6.7.4 Method summary and CONCIUSIONS .......cccaaaaeeeeiiiiiiiiiiiiiiee e eee e 66
6.8 SuMMaAry and remMarksS ..........c..uuiiiiiiiiiiie e 67
Chapter Seven — Usage examples and validity .............cveeeiiiiniiieiiiniinnnne, 68
4% N oo [F Tt i o] ISP PP PPUPPPPR PRI 68
A A 1 (=11 o] (=] ¢= U0 PP PPUPPPPPPPRPRP: 68
7.3 USAQE EXAMPIE ..ttt s 69
7.4 QUANTALIVE STUAY ... ceee et e e 72
7.5 ComMPArative JISCUSSION .......cceeriiiiiimmmmnseeeeeeea e e e e e e s e aiiibbe e ee e e e e e e e e e s smmmnneeeeeeeeeeaaanns 78
7.6 SUMMATY CONCIUSIONS ...cooiiiiiiiiiii e e e e e e e e 81
Chapter Eight — Summary and concluding remarks..............c..oooooienn. 82
8.1 RESEAICH SUMIMAIY ...ceiiiiiiiiiiiiiiiii e e ettt s s 82
8.2 Prop0oSed SOIULIONS.......ccciiiiiiiiiiiitieeeeee ettt e e e e ee e e e eeeeeeeeeeesnnees 83
8.3 CONCIUSIONS ...ttt e e e e e e rmnn e e e e e e e e e 84
8.4 ConClUdiNg rEMATKS........ueeiiiiiiii e 85
8.5 FULUIE WOTK ...t ettt 87
RETEIENCES ... e 89
Y o] o 1= o o {1t S 92

AppendiX 2 — QUESTIONNAIIE ........uuvrurreeieieeeerenriiaaseeeeeeeeeeeeeeeeenennnnnn 93



The role of quality requirements in software architecesign Viii

Figures and tables

Figures:
Figure 1 - The gap between software architecture and quaduirements........................ 2..
Figure 2 - Software elements at different abstraction levelS............cccconiiiiii 6...
Figure 3 -The “4+1" VIEW MOAEl .....ccoooiiiiiiei e 8
Figure 4 - Quality attribute impact and relationships [27].cce..vvveeiiiiiiiiiiieeeeee 15.
Figure 5- An example trade-off analysis Method ... i, 17
Figure 6 - McCall software quality model divided in thregés of quality characteristics .. 20
Figure 7 - ISO/IEC 9126 six main software quality charast@s..............ccccevvvvvvvvivieiinnnnnns 21
Figure 8 - ISO/IEC 9126 quality model for external and mid quality ...............ccceeeeeeeee. 22
Figure 9 - Buschmann et al. [9] pattern categories and&elgories ..........cccccceeevvveiiinnnnnnn. 32
Figure 10- Architecture transformation CategOries ... .o eeerarrrreieeiniirieeeeireeee e nees 38
Figure 11 - Quality Attribute-oriented Software ARchitectudesign method....................... 41
Figure 12 - Quality requirement-oriented design method..............cooovviiiiiiiiiiiiiinneeeeee 42
Figure 13 - An illustration of the Recommendation FrameworlBgss....................cccceeeeeen. 55
Figure 14- An example of AHP quality attribute comparison.............cccccoeeeeieeeiiiiinnnnnn. 60
Figure 15- An illustration of pattern categories at differaistraction levels...................... 64
Figure 16- Quality requirement-oriented and pattern-basedydeasethod......................... 66

Tables:
Table 1- Quality attribute glossary (deSCrPLONS) .occeeeuvviiiiiiieeiiiiiiiiieeeee e 24
Table 2- List of ISO/IEC 9126 Standards ............c.uuuueeeeiieieiiiiiiiiiiieeee e eeneee s 24
Table 3- EXamMPIe MELIICS .. .uuueiiiiieie et e e e e e e e e 25
Table 4- Participation in software architecture designs................evvvvvvviviiiiiiiieneeeennn. 51
Table 5- Average knowledge of quality requirements antigoas...................cccceeeveeeeeennne. 51
Table 6 - Subjects familiarity with architectural patterS.............uvvvviiviiiiiiiiiiiiinnnne 52
Table 7 -Empirical research data for the RecommendatiomBveork...............ccccevvvvvnnnnns 54
Table 8- AHP comparisons per number of quality attributes............cccoooiiiiiiiiiiiiienennn. 60
Table 9- Quality attributes with their weights of import&nc..............ooocciviiiiiiens 1.6
Table 10 -RF results for usability, maintainability, and f@duility ..............cccooin. 71
Table 11- RF results for efficiency and maintainability..............cooooiiiiiiis 72
Table 12- Quality attribute strengths and weaknesses of$aye...........ccccceeeeeeieiiiiiiennnn, 73
Table 13- Quality attribute strengths and weaknesses ofspapel filters...........cccoeeeeeieennn. 74
Table 14- Quality attribute strengths and weaknesses okblzaxd .....................ccoeeeeee 74
Table 15- Quality attributes from different ViewpointS....c.....veciiiiiiiieeeeeeeeee, 75
Table 16- Quality attribute strengths and weaknesses ofaitaK...............eeeeeeiiiiiiiiinnnnnn. 76
Table 17- Quality attribute strengths and weaknesses of MVC.............uvvvvviieniiiiiinnnnnn 76
Table 18- Quality attribute strengths and weaknesses of PAC..........cccccceeiiiiiiiiiiiiinnen. 77
Table 19- Quality attribute strengths and weaknesses ofdREmMel ..............cccevvvvveeeeenenn. 77

Table 20- Quality attribute strengths and weaknesses ofeRBIN...............cceeeeeiiiiiiinnnnnee. 77



The role of quality requirements in software architecesign iX

Table 21- Summarised COMPAriSON VAIUES ............commmmmreeiiiiiiiiiiieee e e e eeaeeens 79

Table 22— Quantitative research results comparison on FAS...........ccccociiiiiiiicieeeeenn, 80
Table 23— Quantitative research results comparison on FQA.............cooiiiiiiiiiiiiiiiiiiiinns 80
Table 24- Framework for Architecture Structures (FAS) [31]......cooooviiiiiiiiiiiieiiiiins 92

Table 25- Framework for Quality Attributes (FQA) [31] ..uuuvvrrriiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee 92



The role of quality requirements in software architectlesign 1

Chapter One — Introduction

1.1 Background of the study

The importance of architectural design is widelgognized in software engineering.
It is commonly known that an architecture is des@jno ensure system functionality, i.e.
meet the system functional requirements. A requémrgnspecification is an outcome of
requirements engineering activities and besidesntkationed functional requirements, it
contains requirements that are not concerned Wétunctionality. Different from functional
requirements that describghat’ the system will do, quality requirements (alsdezhhon-
functional requirementsr system propertigdescribehow’ it will do it. They are in many
cases either unclearly stated or even neglectedgltine requirements specification. This
leaves quality attributes impossible to identifyeasure, and in consequence — address in
software architecture. Hence, to predict explicigyality attributes of a system, quality
requirements need to be specified in sufficienaitlet

Software architecture design is often based oniterthk intuition and previous
experience. Little methodological support is ava@da but there are still no effective
solutions to guide the architectural design. Peshépe most difficult activity is the
transformation from requirement specification istaftware architecture. One key task that
remains especially non-trivial is how to handlelgyaequirements.

The challenge of an architectural design is to bigwva software architecture with the
desired quality levels. Quality requirements se¢ thoundary for the final quality of a
designed system. The problem is to get an earlicatidn of the quality attributes in the
resulting architecture. Software architecture isicmwned with structures of high-level
components and relationships among them. Certambugwtions of components are
recognized to address some quality attributes.olmsequence, quality requirements can be
addressed by the architectural design and furthermanfluence the software quality.

1.2 Aims and objectives

The main aim is to investigate the concept of duatequirements in software
architecture desigrizigure 1 is a general illustration of the problem. Thisdiseaims to
discuss the quality requirements’ impact on sofenarchitecture and the design activity. It
also involves how to ensure and verify the fulfimhef these requirements. The overall
research aim of this thesis is to identify, analyw#el propose a method for addressing quality
requirements during software architecture design.

Objectives:

» Specify software architecture in the context ofldqyaequirements.

* ldentify and classify quality requirements whicliluence the selection of software
architecture.

» Discuss the specification of quality attributes aheir relationship with quality
requirements.



The role of quality requirements in software architectlesign 2

» Study software architecture design as a methodlaéaing quality requirements.

* Analyze the relationship between quality requireteeand types of software
architecture structures.

* Provide recommendations for software architectuesigh in terms of quality
requirements achievement.

* Investigate existing solutions.

» Verify proposed solutions.

Quality 2 Software
Reqguriements . Architecture

Figure 1- The gap between software architecture and quadyirements

This thesis is divided into two main parts: thetfione presents a state-of-the-art discussing
the concepts from the literature and presentingvarsto several objectives stated above.
The second part is a practical research soluttororisists of three proposed methods which
handle quality requirements in software architecugsign.

1.3 Value of the study

Software architects need to understand the meadfimgality attributes and quality
requirements that constrain these attributes, basedwhich software architecture is
developed. The interest of software architectursigiein terms of quality requirements
increases. More attention should be paid to exgloe# context, so that guidance is provided
how to design from quality requirements to softwarehitecture that addresses these
requirements. That is why an methodological suppartmoving from quality attributes
towards software architecture is required, whelitthes existing research was found in this
area. Possibly, if such mature, verified solutieristed, quality requirements would receive
more attention during a system development. Thiepa only an attempt of providing such
solutions and further analysis and verificationtto$ thesis results are required in order to use
the proposed method commonly.

1.4 Research scope and limitations

The domain of this thesis is based on the quagtuirements that are able to be
fulfilled at the highest abstraction level, i.e.ricig the software architecture design. The
requirements engineering phase is omitted; it si@med that the quality requirements are
specified and prepared, so that an architect idyréa take them into account in design
activities.

This paper concentrates on all of the eight archital patterns categorized and
described by Buschmann et al. [9]. The ISO/IEC 94R6lity model [20] is used for the
guality attributes description. Several qualityriatites have passive influence on software
architecture at the design level as they are olbservable during the system execution
(operational quality requirements [7]). These axelwed as they are neither benefit nor
liability at the architectural design level.

The author thinks there are four major limitatiansthis research. Firstly, quality
requirements are often vague, neglected or weaklgciBed. Secondly, the lack of
information about the quality attribute influenae architectural patterns and various types of
software architecture structures in general. Smathber of literature sources is available are



The role of quality requirements in software architectlesign 3

used to collect data about quality attributes imp#@hese are: Buschmann et al. [9], Bosch
[7], and Svahnberg and Wohlin [29][31]. Thirdly,ither Buschmann et al. [9] nor Bosch [7]
use the ISO/IEC 9126 quality model [20] for speicifyquality attributes. Finally, the lack of
design methods that guide software architecturegde®r quality. This however lacks in
similar quantitative recommendation frameworkshie tield of software architecture design.
Only one, similar research was found that invegtidahis area by Svahnberg and Wohlin
[31] and the research in this thesis is based isrptper.

1.5 Structure of this study

This paper is organized as follows. It is importamssettle on definitions and terms
used in this paper. Much confusion can be avoideddreeing on a set of terminology and
establishing a glossary will help to avoid misustiendings caused by the wide variety of
definitions in this software engineering field. Hen little background information and is
required. Chapter Two defines software architecture, its descriptiond aglated issues.
Chapter Three presents the notion of software quality to magnifg concept of quality
requirements and quality attributes. Several quatibdels are described as a method for
quality attribute specificationChapter Four defines the software architecture design in
terms of quality requirements and in general. Plaig also presents the definition of patterns,
their categorization and influence on quality atites. Software architecture evaluation is
also presented in this part as a part of the dgmigoess that ensures and verifies whether a
software architecture has fulfilled its requirenger@hapter Five illustrates the empirical
study construction and its results required forthier analysis.Chapter Six uses the
guestionnaire outcomes to define a recommendat@medwork, i.e. a design support for
choosing an architectural pattern that suits Hestgiven quality requirements. Afterwards,
the validity of the framework is verified i@hapter Seven Finally, the entire research is
summarized irChapter Eight and some significant conclusions and recommenuatire
given.



The role of quality requirements in software architectlesign 4

Chapter Two — Software Architecture

2.1 Introduction

The result from the software architecture desigtiviag is a software architecture,
which has become important field of study in reggsdrs. This increased focus is a result of
software architecture benefits including system austhnding, documentation,
communication tool, architectural drifts, and comemots reusability.

Software architecture deals with the design andempntation of the structure of the
system at high abstraction level. It results inomposition of a number of architectural
elements called components in a certain way (asis)éa satisfy the software functionality
and quality requirements.

More attention is paid to exploring its contextf twere is still no single, standard or
commonly accepted definition of the term. Many aushand researchers have provided its
own, but it is hard to find a one-good, suitablérdiéon. There is also a difference between
the termsarchitectureanddesignwhich are often used as synonymschitectural patterns
are similarly considered aarchitectural stylesquality requirementsare referred ason-
functional requiremenissystem propertieconstrainsand many others. The lack of a clear
specification and hence misunderstandings amonsggetiberms causes much confusion in
software engineering. Therefore, it is importanséttle on definitions and terms used in this
paper. Much confusion can be avoided by agreeing sgt of terminology and establishing a
glossary will help to avoid misunderstandings cdusethe wide variety of definitions.

2.2 Definition

A number of definitions of software architecturevédeen proposed so far. One of
popular is introduced by Bass et al. in [2]. Aw@s used in many research documents, it will
not be presented here. Most of found were conceabedt the system structure, its parts and
the relationships among them. Of course they varyatail, but generally involves the
system presented as a view of components and domsedhe process of dividing the
system into these components and connectors iedcalbftware architecture design and
software architecture is an artefact of this agtivBoftware architecture definitions leave
open questions about levels of abstraction thauldhibbe provided by an architecture. The
literature also emphasizes that software architecitss seen as a method to address the
system’s complexity.

Another, less popular definition that seemed tordiber exhaustive and especially
useful to the purpose of this thesis will be braugh

“A software architecture is a description of thebsystems and
components of a software system and the relatipashetween
them. Subsystems and components are typicallyfigukeiti different
views to show the relevant functional and non-fianet properties
of a software system. The software architectur@ sstem is an
artefact. It is the result of the software desigtiaty.” [9, p. 384]



The role of quality requirements in software architectlesign 5

In this paper, software architecture is concerrmmliithe point of designing towards quality
requirements. This definition by Buschmann et a&veals important aspects of the
architecture as a structure and this structurech foovers system requirements, including
quality requirements. The software architecturevedl for early evaluation of a design to
verify whether quality requirements are covef&bftware architecture is closely coupled to
how well a system achieves various quality attesut[3, p. 5]. Therefore, architecture
should be regarded as an important issue coveramquality aspects of software applications
and much attention shall be placed on modellingdastribing the software architecture as a
design artefact. The following sections depictetiéit approaches to architectural design.

2.3 Common elements

Software architecture is commonly defined in teohsomponentandconnectors-
represents their topology. The Unified Modellingngaage (UML) in version 2.0 defines a
component as follows:

“a modular part of a system that encapsulates itstesds and
whose manifestation is replaceable within its emwinent. A
component defines its behaviour in terms of pravided required
interfaces. As such, a component serves as a tymse
conformance is defined by these provided and requinterfaces
(encompassing both their static as well as dynaainantics)[33,

p. 6].

Moreover, a connector is defined“adink that enables communication between two oren
instances. The link may be realized by somethingjraple as a pointer or by something as
complex as a network connectid83, p. 7].

There are many kinds of components, some of whabe the same properties.
Components, which encapsulate some coherent $ahationality, interact with each other
using interfaces they provide in a defined way udfilf their responsibility to other
components. A component is independent from theaegbrnn which it is used to provide
functionality. At the lower-level software architame (e.g. programming language level)
components may be abstract to elements such aslesp@ackages, classes, objects, or even
a set of related functions or methods. Connecteatize the communication, cooperation,
and interaction between components. Their mainomsipility is to describe relationships
between the components. The system achieves ceualities based on the composition of
its components and connectors, which form the tecture. However, as it was presented in
previous section, the meaning of software archirecextends far beyond the definition of
components and relationships between them.

The term component is used as a high-level dedgnent. Components differ from
other ‘objects’ from the level of abstraction theyncern [13]. Components are fundamental
architectural building blocks, whereas ‘object® auntime entities of a lower-level design.
Unlike components, ‘objects’ have an identity; tlaeg arranged into hierarchies according to
their inheritance relationships.

To summarize, software architecture definitionsiareoncern with:
* major (high-level) components,
e component behaviour,
» decomposition into certain structures,
* interactions between components through connectors.



The role of quality requirements in software architectlesign 6

These principals set the fundamental system streicArchitecture definitions do not define
however what a component is. It is presented th@sgh software element.

—t— Components, connectors

—t— Modules, subsystems

__Classes. objects, packages
(programming languages)

Abstraction level

—4— Machine languages

Figure 2 - Software elements at different abstraction levels

2.4 Architecture Description Languages

Architectural Description Language@DLs) are formal, modelling languages for
describing the software architecture. They areesgmted by a formal notation (semantics)
and also using graphical representations that spores to the textual notation. Natural
language (written text) is also a modelling languaé number of ADLs have been
introduced for modelling architectures to providdeasive means in modelling capabilities
and tool support. The architecture description &hprovide input for the analysis of quality
attributes. However, those methodologies are stimonmgpresenting functionality but tend to
be weak in representing quality requirements. Aedtural Description Languages that are
concerned with object orientation can though regmesbut not directly, some of the quality
attributes such as maintainability, understandgbiland reusability. An ADL presents
architecture in one view only. Since the architeetis not a simple flat view of component
and connectors, multiple views are used to undmistae architecture comprehensively.
Multiviewed approach to software architecture iguieed for managing the complexity of
designing and developing software systems. Multiglwvs started becoming popular in
software architecture with the development of miiugl concepts and notations of the
Unified Modelling Languag€UML).

2.5 Views

2.5.1 Introduction

Multiple viewsprovide representations of the software architectivat can be used to
guide its construction. A view provides a usefuhiee for communicating the architecture
to different stakeholders. They provide a multivosmnt framework for software
architecture. They also manage complexity, i.e.tiplel views enable decomposition of the
designed architecture. The view models addresstia structure of the architecture, dynamic
aspect, physical layout, and also the developmietiteosystem. An architect is responsible is
to decide which view should be used to describesttivare architecture. The main purpose



The role of quality requirements in software architectlesign 7

of using views from the point of this researchhattdifferent views exhibit different quality
attributes important during software architectuesign and evaluation.

Bass et al. in [2] underline that software archies defines the overall system’s
structuré since software systems exhibit many structure fost common and useful
structures (views) aremodule conceptual(logical), process(coordination) andphysical
software structures. Each of them helps to exkiifiiérent quality attributes, and that is why
it is important to mention about different typessofftware structures. Each structure is an
abstraction of the system with respect to diffei@iieria. Moreover, each structure may use
different notation (description language), incluglirits own signification of system
components and relationships among them. Strusfuiegluded in software architecture are
not visible to the system’s end user.

According to the definition of software architeuin terms of components,
connectors and relationships between them, a view set of specified components and
connectors that describe a software architectuaeh Eview has its own definition of these
architectural elements.

2.5.2 RM-ODP

Another approach considering architectural isssethé Reference Model for Open
Distributed Processing(RM-ODP) described in [19] by the Internationalaglards
Organization (ISO). RM-ODP is a formal standardt teerves guidance how to describe
distributed object-oriented software architectuiédee model is quite general, and therefore it
is used in various application domainshe model defines a practise for software
architectures that investigate the properties efrithuted software systems, i.e. provides a
framework for the development of distributed preteg. The RM-ODP introduces the
concept of aviewpointto reveal a certain set of system concerns. Therdiee essential
viewpoints that serve a comprehensive model foringles software architecture. These
viewpoint are:

1. Enterprise viewpointefines the system in terms of business requirsnegstem
objectives, policies, and purpose. It is directasldrds user needs.

2. Information viewpointdeals with the information structure and objedtsis an
activity when elements of the system are modelled.

3. Computational viewpoinhandles decomposition of the system into objectstheir
interfaces and behaviours. This viewpoint suppaigsamic behaviours that are
specified by the information viewpoint. It usesitm partitioning of the distributed
systems independently of an environment.

4. Engineering viewpointefines the relationships between the distributiejgcts and
presents methods of supporting behaviours betwesetobjects.

5. Technology viewpointdecompose the system into software and hardware
components. It identifies possible technical strces.

Each of these perspective is object oriented, andiges a model for the system from the
given viewpoints. The first three viewpoints defiseftware architecture making the

distributed computing transparent. Usually, the fiddi Modelling Language is used as

formal notations for describing each of the sofevarchitecture viewpoints. The RM-ODP

viewpoints provide a separation of architecturalies that divide the software architecture
into functionality and the distributed computingests.

! The termstructureby Bass et al. [2] is used synonymously wiigw.



The role of quality requirements in software architectlesign 8

2.5.3 The “4+1" view model

The literature provides sevendbw modelghat consist of a number of architectural
views. Each view reveals different aspects of tbfware architecture. The4+1” View
Model described in [22] by Philippe Kruchten focusesdescribing object-oriented systems.
The model is composed of five main views (perspes)i

1. Logical viewaddresses the functionality; it is a object madehe design.

2. Process vievdepicts the concurrency and synchronization aspgdhe design.

3. Physical viewpresents how the software is combined onto thdwee and reflects
its distributed aspects.

4. Development vievecaptures the static organization of the softwaréts execution
environment.

The fifth view (+1) providescenariosor use cases that tie the other four views togethd
help to validate the design in the other views.hBa@ew has its own particular notations and
may use different patterns that guide their contpsiand therefore allow multiple styles in
one software system.

Logical View Development
View

@ Scenarios
Process View Physical View

Figure 3- The “4+1" view model
2.5.4 Hofmeister et al. design method

Another important model to understand the archir@ttissues facing designers
presented in [16] by Hofmeister et al. depicts feiaws that address different engineering
concernsConceptual vieways attention to appropriate decomposition ofsfstem without
delving into details. However, it handles some gladystem properties such as performance,
maintainability or dependability. It also makeshatecture available to different stakeholders
(end-users, developers, project managers, marketiog. Module viewmaps and controls
system’s functionality. It addresses how the sohsgi of conceptual architecture can be
realized in today’s software platforms and techgis. Execution viewis often used for
distributed or concurrent systems. It maps the aomapts (with the functionality included
inside) onto the processes and platform elementseophysical system. Last, but not least,
the code view It describes the organisation of the architectlesnents are mapped into the
implementation.



The role of quality requirements in software architectlesign 9

Conceptual view [*
Celeeafeeing, Gl iaiHe]

F 3

Y

5
.; _ 7
v = i
= =
4 E I ld =
Module view * gk 2
{hayem, sabsysiemns, modules) I E _; > :::'.,
& a2 =

¥ g

Code view =
i ilis; i i pockaagnes: ibrans) H=

h ' Y

Source code

Figure 4 —Hofmeister et al. view model

2.5.5 Summary and remarks

The Hofmeister et al. four view model is quite g&mto Kruchten’s. The logical view
resembles conceptual view, process view resemkesigon view, etc. The important this is
that views are used to express different aspedtsecrchitecture using an appropriate way.
Views that best fit the situation should be usede @vay to select the view set is to use
previous experience and look at similar architextswlutions that used views. An architect
can also focus at the stakeholders needs, and egitypbf the system. However, from the
goal of this research, looking at system’s quaditiyibutes can help to decide which views
provide the information relevant to deal with thefnchitectural patterns presented in [9] by
Buschmann et al. as the software architecture gisers represent the conceptual view by
Hofmeister et al. [16] and logical view by Krucht@2].

2.6 Software requirements

Software requirementslefined during the early stages of a system dewveént as a
result of requirements specification, consisfuictionaland quality requirementsBoth of
these are important because they provide basislfarf the software architecture design
activities. The requirement specification is useda input for architectural design. Once the
requirements are set, a software architect ingidtee design and other technical work
follows: development, testing, implementation. ®@fte architecture design is about
converting the requirements into software archibectthat fulfils these requirements. The
meaning of software architecture design is disaligséetail inChapter Four.

Functional requirements are defined by SommernnllR8, p. 100] asstatements of
services the system should provide, how the sy&tenld react to particular inputs and how
the system should behave in particular situatiorfstinctional requirements describe what
the system must do. They are also cabbetiaviouralor operationalrequirementshecause
they specify the system’s possible inputs and datfinteractions with between the system
and its external world), including their behaviduraationships among them. Typically, a
functional requirement is implemented in the systsnone or more components or modules
that fulfil some part of the application functioitgl



The role of quality requirements in software architectlesign 10

“While developers were used in the past to conedimy on providing the stated
functional properties for software, today non-fuosal properties are becoming
increasingly important’[9 p. 389]. Bass et al. in [2] state accuratelgttrchitecture
addresses a lot more than just functional requinesnéNevertheless, these requirements put
constrains how functional requirements are oughigamplemented. Unlike the functional
requirement describingvhat’ the system will do, a quality requirement des@itt®w’ it
will do it. The definition, concept and nature ofialjty requirements are presented in
Chapter Three.

2.7 Styles and patterns in Software Architecture

The literature such as [7] distinguishes betwaerhitectural stylesand patterns
Styles are a categorization of systems and pattexhgit general solutions to common,
recurring problems. Also, patterns tend to be naetiled than styles. However, they are
often synonymously termed as they provide a comusage and vocabulary. That is why the
term‘pattern’ will be used in the following and further discussi

Software architecture design consists of activineeded to specify a solution to
balance the fulfilment of the requirements. In ortte properly design the architecture an
architect should know how particular design proldeare solved and to be able to compare
and discuss different candidate choices. Sincesittee and complexity of software systems
continuously increase, experienced software dessgramnd engineers use of certain,
predefined ways of organizing software elementsabse of the properties these structures
provide. Patterns are one of these approachesigmileg software architectures.

Patterns are in general an essential tool in sofvaachitecture design that support
the development, maintenance and evolution of laogde systems. providing documented
and communication proven design solutions to r@agiproblems, that also ensure a problem
context, not only the specific results they propd3atterns are recognized for many uses
such as common design vocabulary, documentatiorleanding aid as well as their solution
trade-offs.

Their role has become important in describing safevarchitecture due to the
influence on software quality. Not only patterns ased to fulfil functional requirements of a
system, but also, what is important to this redeatelp to address quality attributes
corresponding to quality requirements. Literatunarses, such as [2][7][9][16], prove that
guality attributes are affected by decompositioncomponents and their responsibility.
Different arrangements of components affect diffierquality attributes of the designed
architecture without affecting the system’s functibty. This fact brings software
architecture design in suitable ways for the puepoisthis paper. However, patterns help to
address only development quality requirementss lalimost impossible to evaluate the
operational quality requirements at the architedtdevel. Descriptions, categories and
detailed concepts of patterns are further desciibedction 4.2

2.8 Summary and remarks

The most important concept of this chapter in teohshis research is that certain
infrastructures of software architecture elemenés,components and connectors, cover to
some degree several quality requirements. Pat@msecognized as topologies of such
elements, and hence they are a great ‘tool’ forresfihg quality requirements at the
architectural level.



The role of quality requirements in software architectlesign 11

Systems are built to satisfy their requirementsftvre architecture design
determines whether the software architecture hiiddd system requirements. There is still
lack of knowledge and what matters the most -elipitactical guidance on how to manage
the design activity. There is a lack of precisaglesnethods that guide software architecture
for quality. Usually design means taking steps tovple the system with its expected
functionality. However, a number of different aitrites, properties, or qualities are of interest
during software architecture design. These attedwre of crucial importance because they
constrain quality requirements, which in turn coaist the design and development of
software architectureChapter Four presents a detailed concept of software architectu
design and related issues.

It is obvious that the same requirement specificagjiven to two different architects
will produce two different architectures. The qimsts — how can we determine which one
of them produced better architecture? There is lacepfor statements like good or bad
architecture. Those candidates are less or motabseiifor the stated purpose. One way to
check whether the requirements were addressedasmuining that all of them were covered,
the next step is to measum®w well’ these requirements are fulfilled.

Patterns can be very useful. On the other handhistinderstood, they can lead to
disastrous solutions. The most important is wheshpatterns fits the design and is the most
applicable choice among others. Large-scale softwgstems will incorporate many patterns
in their design as it is almost impossible to diésca large system with a single pattern. This
leads to an observation about the way the quaiyirements are concerned to be fulfilled
or not by architectural means. The activity of messg whether and to what degree quality
requirements are coved by the architecture careiddt called software architecture
evaluation (sesection 4.3for details).



The role of quality requirements in software architectlesign 12

Chapter Three — Quality Requirements

3.1 Software quality

This part should be introduced by the definitiord aneaning ofsoftware quality
Before dealing with quality, one has to realize whareally is to be able to control it.
Understanding clearly the concept of quality intwafe makes it easier to be aware of its
importance in software development. An increasingniber of standards in the field of
software quality emphasize the need for its obsemvaand measurement. Literature also
proves that the notion of software architecture degeved the appropriate level for dealing
with quality. Mostly it is due to many researchea guality attributes field
([21[31[71[9][16][17][18][29][30][31][32] and many others). It is also recognized that
architecture sets the software quality boundariésthe resulting system. This thesis
underlines that the functionality of a system itsbes not guarantee required software
quality. Also, achieving quality is not simply chéng if requirements are met; it includes
specifying the measures and criteria to demonsthetie level of achievement. That is why
guality requirements are extremely important aralrthole is investigated in this research.
However, software quality assurance is an afteghbin most designs.

Quality is subjective due to the lack of formaliamd consensus in definition. Quality
is defined in [20, p. 20&s “the totality of characteristics of an entityathbear on its ability
to satisfy stated and implied needsivhereas software quality definitions concern
conformance to requirements. A good definition riesented in [18] in the following way:
“the degree to which a system, component, or paasets customer or user needs or
expectations; and“ability of the system to satisfy its functionagmriunctional, implied, and
specified requirementsintroduced in [1]. Software quality is often séiced in order to
keep low development costs and project on schedtle.quality aspect can be attributed to
process and product quality.

The challenge of software development is to enthakesoftware has the right quality
levels. More efforts are concentrating on ensurihgt the quality is addressed at the
architecture design level before the system isadlgtumplemented. The best way is to
measure the level of quality using quality modedsatibed insection 3.3as they propose a
more structured, fixed, and what is important quaie view on software quality. In
general, a quality model depicts how compositiorpafticular quality characteristics and
their relationships affect the total software qtyali

Architectural decisions have a great impact orfitied software quality. It is possible
to tell whether the most suitable architecturalislens have been made during the design
without having the system developed and deployé¢geifsystem exhibits its required quality
attributes [2]. That is why it is necessary to eaté how a software architecture meets its
guality related issues at the software architedewel. Section 4.3focuses on the importance
of software architecture evaluation as a methodentifying potential risks and verifying
that the quality requirements have been addresséagdthe design.

One of the goals of this research is to revealrtiportance of quality requirements in
software architecture and to ensure they are alwalysn into account during a design.
Paying attention to them will bring nothing but bé&ts and increased software quality.



The role of quality requirements in software architectlesign 13

Therefore, this general discussion of the softwparality was presented right before one of
the “core” concepts of this thesis, i.e. qualitygueements explained in detail in the
following section. Also, many researchers have psep their own categorization of
software quality, which resulted in proposing salguality models described g®ction 3.3

3.2 Quality Requirements
3.2.1 Introduction

It is worth to mention at the beginning that theseno one-standard, universal
definition of quality requirements. Also, differepé¢ople use different terminologies. Quality
requirements are also recognized in literature nas-functional requirementsnon-
behavioural requirementssystem propertie®r constrains Bass et al. [2] underline that
terms of these requirements that consider thedadlknctionality is an inappropriate term. A
number of literature sources, and what are impomnorid standards use the term quality
requirements, and therefore it will be used in gaper. Their definition has to be customized
in order to be properly used [10]. Hence, a deéinit meaning, their categories and other
relevant information from chosen literature sounvésbe presented.

3.2.2 Definition and concept

Different from a functional requirement (FR), a hjtyarequirement (QR) defined in
[17] as“a requirement that a software attribute be presensoftware to satisfy a contract,
standard, specification, or other formally imposdmtument”is a requirement that does not
concern functionality. As the name suggest, theycancerned with the quality delivered by
the system. Theyplace restrictions on the product being developew the development
process, and they specify external constrains thatproduct must meeff26, p. 187]. In
other words, quality requirements determine coirstran the functionality.

Quality requirements determine the overall quaijtiattributes, or properties of a
software system. Functional requirements describeat’ a system is expected to do,
whereas quality requirements put constrains orrictisns on how’ these functional
requirements are ought to be implemented. This @y are more above the functionality,
i.e. system services, capabilities and behavioucohsequence, functional requirements may
need to be sacrificed in order to be able to addyeslity requirements [28].

Quality requirements may affect either one partaaf application (concern one
functional requirements abstraction of a systemjher system as a whole. To understand
their importance it is worth to mention that som@dtional requirements may need to be
sacrificed in order to meet the system quality nexuents, and in result — the product goals.
Furthermore, the lack of a system service (funetioequirement) may degree the system
usability, while not covering a quality requiremerduld make the system totally useless
[28].

3.2.3 Quality Attributes

A software system has many characteristics sucmaiatainability, reliability and
usability. The quality of each of these charactiessdetermine the total software quality.
Each characteristic can be specified as an progettyibute) of the system. A quality
attribute is“a characteristic of software, or a generic term mying to quality factors,
guality subfactors, or metric value$17]. The previous section defined quality regmesnts.



The role of quality requirements in software architectlesign 14

In other words, it is a measurable or observabipgnty of a system that has some qualitative
or quantitative value. Measurable means that aicetrgiven on how to verify that the
architecture addresses the quality attributes.eixample performance is a quality attribute.
Helpful for the introduction of quality attributéalso referred aqualities or “-ilities”) is a
definition of a quality requirement dspecification of the acceptable values of a qualit
attribute that must be present in the systgd]’ Quality requirements put constraints on a
guality attributes. They are usually specific valua scope, or ranges of values for quality
attributes."Quality requirements that can not be quantifiechaaot be controlled either{8,

p. 77]. It means that in order to be able to satigfality requirements and generally — the
guality of a software system, quality attributevédndo be quantified. Having a requirement
that system shall handle a specified amount of ectimns concurrently, then that is a
requirement on quality attribute represented qtetitely, i.e. a quality requirement.
Analogically, the response time shall be less thatime unit, is another example of a
constraint put on performance. The same attriiwe different quality requirements.

3.2.4 Quality Attribute impact

Architecture design decisions have proven to impadain quality attributes, which
are not mutually exclusive — they often affect eather positively or negatively’'Non-
functional properties may contradict as well as ptement each other{9, p. 410]. Some
quality attributes strengthen (positive impact)reather like flexibility and maintainability,
safety and security, or maintainability and potigbiBass et al. mentions thato quality
can be maximized in a system without sacrificingeather quality or qualities2, p. 75].

In other words, as previously stated, some qualityibutes may hinder others (negative
impact). Some relationships are greatly provedhyliterature. For exampleThe benefit of
exchangeability comes at the price of increasedymming effort and possibly decreased
run-time performance”[9, p. 49]. Other negative interdependencies uhelwsimilarly
maintainability and efficiency, security and us#pijl security and performance, etc. The
guality attribute relationships are not “set intang”, i.e. the impact may be stronger or
weaker depending on attributes and their desigtesgtn

Since the quality attributes are interdependeret,disign is a difficult task. In worst
case, every design decision impacts multiple qualitributes negatively. Each architecture
candidate has to be evaluated to check its impadesired quality attributes. Further design
decision may neglect previous ones. If determinfeak tattributes are in conflict, it is
important to find an architecture that providesappropriate compromis&/Nhen specifying
non-functional requirements for a software architee, you need explicitly consider the
interdependencies and trade-offs that exist betvieemi [9, p.410]. A good design balances
all the quality attributes, usually according taeithprioritization as well astrade-offs
(sections 3.2.&and3.2.7respectively).

To summarise, three types of quality attributeatr@hships are identified:

e passiveimpact — a quality attribute does not influence ttther,
* positive impact — high value on a quality attribute deteresi
a high value on the other,
* negativeimpact — high value on a quality attribute deteresi
a low value on the other.

Figure 4 from [25] illustrates how identified quality atitites influence each other.
However, quality attributes are not specified imte whether they strengthen or hinder each



The role of quality requirements in software architectlesign 15

other. The illustration indicates only that a rielaship between a pair of attributes exist —
one depends on another. High impact between atsha presented with a light circle. Dark
circle describes low relationship, whereas a bldéiekd denotes passive influence (no
dependencies).

&
FACTORS < f\‘i
Corectness éﬁ“ﬁ
Reliability O N p &a‘c'
Efficiency \&ﬂfﬁ
Integrity . dﬁ
T ele) o
Maintainability O O . O
Testability O O . O
— O 0eeo
Portability .
— 'Y
Intercperability . .

Figure 4 - Quality attribute impact and relationships [27]

3.2.5 Quality requirements categories

Bosch in [7] categorized quality requirements @esvelopmentor operational
Development quality requirements are those quslitedevant from a developer point of
view, from the software engineering perspectivay. enaintainability, demonstrability,
extensibility, flexibility, reusability, portabilt, etc. Maintainability, for example, is more
important to developers, because it enables thecehaf a system to make changes, fixing
bugs, and further development of the system. Orogposite, there are operational quality
requirements important from the user perspectivecabse they are noticeable and
measurable during the system’s runtirfgu@lities of the system in operation(7, p. 27])
like availability, efficiency, flexibility, perforrance, security, usability, etc. Users see the
performance more important, as it affects the uUisalof the system. Bass et al. [2] used
similar categorisation against which the designgstesn can be measured — attributes
observable via executioand thosenot observable via executio®ome qualities, such as
flexibility or understandability, are important froboth perspectives and therefore, could be
classified into both categories depending on thalifjumodel is used. A good point to
mention is that quality of development quality riegments is inherently difficult to measure.
Performance and reliability (operational qualitgugements) may be measured to certain
degree using numeric criteria (e.g. by executing thystem), but attributes like
maintainability are almost impossible to measuréhet previously stating what these
gualities mean, especially to different groupstaksholders.



The role of quality requirements in software architectlesign 16

Kotonya and Sommerville in [27] classify qualitygrérement$ into three major
groups: product requirementgreliability, usability, etc.),process requirement&elivery,
implementation, standards) aexternal requirementéeconomic constrains, legal constrains,
interoperability). Product requirements are simitaBosch’s operational requirements; they
specify product behaviour.

Quality characteristics and associated metrgection 4.3.3 are used to defining
guality requirements.

3.2.6 Prioritization

Functional requirements usually have an associptexity: required, preferred or
optional. Why not do that with quality requireméhnti is a significant task to prioritize
guality requirements too. Prioritizing quality reéepments is crucial since not all of them are
created by equal means. Moreover, different qualiiybutes are not of equal importance.

In order to balance between the specified quatyuirements a priority has to be
assigned to each of them to indicate how importaey are. Stakeholders are commonly
responsible for establishing priorities. Differestakeholders have varying interest and thus
prioritize quality attributes in a different way.they decide that all requirements are equally
essential, the harder it will be to achieve anatife balance. It is highly recommended to
establish a preference of one quality requiremgairest another (others) in case of conflict.

Customers and developers must settle on an agré@meaquirements prioritization.
One prioritization scale may not be enough, whoenstimes different stakeholders need
different scales. Developers will not know whaingportant to the customers, and of course,
customers cannot specify the cost, effort, timededeand technical difficulty associated with
some quality requirements. Especially that qualéguirements are often invisible to
customers. Once quality requirements are spediineticlassified, they have to be decided on
which must to be implemented and which ones coaldefected if there should be a shortage
of budget, time or in case of technical difficuitie

As a result of prioritization activity, quality remements will be weighed according
to their importance. Priority is a function thatopides values necessary for comparing
quality requirements, and from the position of thesearch it enables to select the most
appropriate software architecture among alternatvigh similar properties.

3.2.7 Trade-offs

Trade-offs are about analyzing quality requiremeuassibilities with regards to how
well a software architecture meets each of thesgimements, and reasons about their
possible conflicts. This often enables further guakquirements refinement and according
to quality attribute impact section 3.2.4 this might exhibit new conflicts. Besides
prioritization, a good way of balancing quality vd@ments are their trade-offs. Software
architecture design involves a series of tradedeffisions among quality requirements to
obtain a compromise design which best meets theg@rements. It is important to make
trade-offs early in software architecture desigrcdose such decisions are hard and
expensive to be implemented in further stages.

Designs almost always require trade-offs betweenpeting design choices to meet
quality requirements. Large-scale software systeften do not fulfil all of their quality
requirements, but select the most suitable ardiitacsolutions using trade-off mechanism

2 Gerald Kotonya and lan Sommerville in [27] usettrennon-functional requirementimilarly, but not
equivalent tqquality requirements



The role of quality requirements in software architectlesign 17

with respect to significant parameters betweeredffit quality requirements. By significant
parameters two things are meant that can be usadjoalitative and quantitative basis:

» priorities between different quality requiremeniscdssed in previous section,

* positive and negative impact of quality attribubeseach other.
These factors are used during the early designeghasd of course, during the software
architecture design.

Based on little personal experience in softwarditgcture design an example of
trade-offs analysis is presented. Without any aateohsupport and hence — based mostly on
architects knowledge and intuition two candidath#ectural structures were chosen during
the design activity. These were described in teoitheir benefits and liabilities so that in
future persons in interests can look why certalot&m was accepted and the others rejected.
Finally, the rationale for the final decision beemepotential solutions was described one of
the architectural designs proposed for this systegure 5 illustrates a trade-off analysis
used in the provided example.

1. Trade-off analysis

1.1. Structure A

Benefits: Liabilities:

1.2 Structure B

Benefits: Liabilities:

1.3. Rationale for the chosen solution

Figure 5 - An example trade-off analysis method
3.2.8 Quality Requirements in practise

Developers are constantly under pressure to deinesoftware product on time and
on budget. In result, projects lack in quality riegments as they tend to focus only on
delivering functionality. Insufficient time and eft are spent on the quality requirement-
related activities associated with the design ftixsare architecture. As it will be presented, a
better approach is to invest additional time omwitatig, gathering, analysis and generally
handling quality requirements. It will benefit inet final software product quality. Thus, the
total quality of a system is ultimately determinieg the quality of each requirement. By
leaving them unstated, the software system lackguadity and in worst case — lead to a
series of failures in software development andratieds during the system usage. However,
these types of requirements often are neglectesyMaftware requirements specifications



The role of quality requirements in software architectlesign 18

(also called software requirements documents), goain official statement of what is
required, are either full of badly written (qua)ityequirements or do not specify them at all.
Most applications lack in these areas that areeanterned with functionality. This is often a
result of the system’s complexity and badly spedifneeds. If they are specified at all, they
are of poor quality, i.e. incomplete, inconsistambiguous, or incorrect. Their completeness
means that all quality requirements should be eefinConsistency means that their
definitions should not contradict each other. Qualequirement is unambiguous when it
cannot be interpreted in more than one way. Caresst means that it should accurately
reveal system needs.

Software architecture notations should be capablstating quality requirements.
None of the studied addresses quality aspectseoéitthitecture. UML use-case models are
used to present the functionality of a system esgwée by functional requirements. Quality
requirements, on the other hand, are often destbbeéow them in supplementary text or as
footnotes.Table 3 illustrates such examples. Notations should haeeability to visualise
quality requirements, or at least support theimesions while a difficult task is to present
graphically the above example.

Another problem of quality requirements in requiesns specifications is how to
specify the notion of software quality. Much attentshould be paid on its understanding
and so that all participants share the same meanfitige quality aspects. Everyone has to
agree on how quality requirements have to be dfigahtand, in consequence measured if
they address the specified level of quality.

On the opposite of functional requirements, qualéguirements are often hard to
specify, test and verify. Design methodologiessireng in expressing functionality but tend
to be weak when it comes to quality requiremenkteer@ is little precise guidance available
on how to elicit and specify quality requiremeriain reasons include misunderstanding of
their importance, their mutual dependencies, inadex languages or inappropriate
formalism of expression, and many more. Those heescommon reasons why they are
afterwards addressed subjectively. This resultarahitectural solutions that badly address
quality requirements. Mostly because of the inhemdifficulty in designing for quality
requirements, which is provoked by the lack of doented patterns and their benefits and
liabilities for certain quality attributes that gei the design for quality requirements.
However, an important step towards designing wiihlity requirements is Bosch’s design
method [7] depicted isection 4.4.2

3.2.9 Summary and remarks

Quality requirements does not concern functionakty the name suggest, they are
concerned with the quality delivered by the systéhey “place restrictions on the product
being developed and the development process, aydsgecify external constrains that the
product must meet[27, p. 187]. In other words, quality requiremede&termine constrains
on the functionality.

The goal of this thesis is not to give guidance howelicit and specify quality
requirements, but to investigate their role inwafe architecture design. Nevertheless, one
has to be aware that badly written requirementsiaedess for their further analysis. Quality
requirements specify system attributes, such astmaability, reliability and safety. They
are a result of putting constraints on one or mofethese attributes. Attention to
requirements is crucial for quality. By leaving teém quality requirements not covered, the
system lacks in required quality level.

Many of the quality requirements cannot be measareazhlculated before the system
is actually implemented, and therefore difficult alidate. Yet they are hard to deal with



The role of quality requirements in software architectlesign 19

since they often tend to interact with each otheying positive or negative influence.
However, during the design phase, much of the tyuasipects of a system can be addressed.
During software architecture design such requiregmaaed to be prioritized and balanced in
design tradeoffs when architects have to deciden upe selection of a particular software
architecture solution.

Probably the most difficult activity during softveararchitecture design is the
transformation from requirements, especially qualiequirements into the particular
structural or behavioural aspects of software &chire due to lack of methodological and
technological available support. Hence, this papen attempt of bridging the gap between
guality requirements and software architecture.

3.3 Quality Models
3.3.1 Introduction

Similarly to quality requirements, which have nceestandard definition, there is no
one-complete, universal list of quality attributekwever, many taxonomies and standards
were published to define quality attributes suchEtE, 1ISO, and ANSI.

The terms and definitions around quality presetiteraits qualitative view. Quality
models are used to reveal a structurized, and whiaiportant — quantitative view on quality.
Their intention is to capture quality in a modehcg the total quality consist of the
composition of particular characteristics. A qualinodel sets a standard taxonomy for
quality attributes and relationships among therstuties aspects of software systems which
relate to the notion of software quality. It alsernges a framework for quality attributes
within which to analyze requirements and designisi@as. There are several well-known
guality models such as McCall's (1977), Boehm’'s789 FURPS/FURPS+, and ISO/IEC
9126. The ISO/IEC standard will be detailed desttjbas the one this research refers to.
Two first are briefly mentioned due to the facttth@O/IEC 9126 [20] was based on the
McCall's and Boehm’s models. FURPS/FURPS+ is priesems it is a relatively recent
quality model proposal, and resembles in its stmattmanner the other mentioned models.
The main difference between them is the classiGioaand definition of quality attributes, as
well as the depth of hierarchy and a differentltotanber of characteristics.

3.3.2 McCall's Quality Model

Jim McCall and his colleagues in [26] organized sioftware product quality into
three categoriegproduct operationproduct revision andproduct transition where to each
category a set of quality characteristics is asgediProduct operatiorfocuses on qualities
important from user perspective (operational chargstics). It contains correctness,
reliability, efficiency, integrity, and usabilityProduct revisionincludes maintainability,
testability, and flexibility. These characteristidescribe the ability of a system to make
changes.Product transition presents the software adaptability to new envirems It
contains portability, reusability, and interopetipi

Figure 5 presents high-level quality attributesmied quality factorsin this model.
McCall distinguished also a second level qualityitaates, termedjuality criteria, which
describe the internal view of the software, frora tleveloper perspective. The model also
depictsmetricsthat are defined and used to provide a scale agttiad for characteristics
measurement.



The role of quality requirements in software architectlesign 20

Factor

Use \

Correctness J

Efficiency |

Reliability |

Product Integrity ]
operation Usability ]

Maintainability ]

Product |

revision 1 Testability ]

Product Portability ]
transition

Interoperability |

Reusability |

Figure 6 - McCall software quality model divided in thrggés of quality characteristics

3.3.3 Boehm’s Quality Model

Barry Boehm in [6] presented similar approach isigaa common subset with the
McCall's model and identifying additional qualitytrédbutes. It also presents a model based
on hierarchical dependencies among attributesctsired around high-level characteristics,
intermediate level characteristics, primitive cludeastics (metrics). McCall's quality model
was basically focused on the measurement of thi-leigl attributes (quality factors),
whereas Boehm’s model considers a wider set of achenistics. Of course, each
characteristic of both models set the boundarigeebverall quality level.

3.3.4 FURPS/FURPS+

The FURPS model used by Unified Process is simgistructured as the previous two
described models. It provides five following catege of quality attributes:

* Functionality — A set of attributes characterizing feature setgcuracy,
interoperability, and security.

» Usability — Attributes that depict the usage effort. Theglide understandability,
operability, user documentation, and other humatofa.

* Reliability — Characteristics that involve fault toleranceoreerability, predictability,
accuracy, and Mean Time Between Failure (MTBF).

» Performance— Attributes that consider response and procestimg, level of
performance in comparison to the amount of resmurased, efficiency, and
availability.

» Supportability— Characteristics that include the effort neededntorporate new
requirements and to make modifications. It also ceons configurability,
serviceability, installability, and localizability.



The role of quality requirements in software architectlesign 21

FURPS acronym is named after first letters of estwbve category. Later the FURPS
model was extended by IBM Rational Software intoRR$+ which defines additional
quality requirements categories: implementation uiregnents (constraints on tools,
programming languages, and hardware), interfacein@gents (interaction with external
systems), operations requirements (constrains onrggtration and management), packaging
requirements (constraints on system delivery), deghl requirements (licences, law
regulations). The FURPS categories are divided twio different types: functional (F) and
non-functional (URPS). As it was stated earlierligyaequirements are also referred as non-
functional requirements such as in FURPS. Howewdrat is interesting that the model
defines quality requirements as non-functional mresoents, which are grouped into “URPS”
categories. Additional non-functional requiremerdse called constrains or pseudo
requirements.

3.3.5 ISO/IEC 9126 Quality Model

Like any other quality model, ISO/IEC 9126 servesuseful tool for quality
requirement engineering as well as quality evabmatilts quality characteristics and
associated metrics define a framework for speaifynality requirements, and for trade-offs
between software product capabilities. ISO/IEC 94@élity model enables software product
quality to be specified and evaluated from différparspectives. It can be used by different
groups of stakeholders, i.e. architects, develgperd testers responsible for dealing with
software product quality. It is structured basigdike the two, above mentioned models.
However, it includes also the functionality as afii¢he quality characteristics. Functionality
is concerned withwhat' the software does to meet stated and implied needsreas the
other characteristics are concerned witthen’ and ‘how’ it fulfils these needs. Also,
differently from McCall and Boehm, the model idées bothinternal andexternal quality
characteristics. This research deals with intequallity, as the software quality is measured
and evaluated by quality attributes. ISO/IEC 9126 aiffers from previous models in
having a one-to-one hierarchy where each subcleistot relates to only one characteristic.
Each quality characteristic may be broken down subcharacteristics, which can also be
broken downFigure 7 depicts the top-level characteristics with theing@al meaning.

ISO/IEC 9126

How easy it is to adapt
the the software to
different environments?

How reliable is
the software?

Func ability

How easy itis to
make changes?

Are the software
functions, services
included?

How easy in use How efficient is
is the software? the software?

Figure 7 - ISO/IEC 9126 six main software quality charactics



The role of quality requirements in software architectlesign 22

The model defines three types of software produatity:
» quality in use(software product used in a specific environmertt eontext from the
user’s perspective),
» external quality(executable software product),
» andinternal quality(software product during development).

That is why software quality requirements are dafilmere as external quality requirements,
that specify the level of required quality from teaternal view, and internal quality
requirements which specify the required level ofldgu from the internal view of the
product. ISO/IEC 9126 consists of six internal amxtiernal quality characteristics namely:
functionality, reliability, usability, maintainaliy, efficiency, and portability. Each of these
is divided into several quality attributes or sud@cteristics, e.g. reliability is composed of
maturity, fault tolerance, and recoverability.

characteristics subcharacteristics L
/ Suitability |
Accuracy |
Functionality 7
Understandability | Interoperability |
Learnability | Security |
- Usability
-qé SRR | Analyzability |
E it i o g gy
z Attractiveness | Chanaea iy |
= Maintainability
5 Adaptability | Stability |
=
N e sy
2 = Installability | Testability |
(&) Portability
= Co-existence ‘
B R Maturity ]
- Replaceability |

Reliability | Faulttolerance |

Time behaviour 1 \' Recoverability 1

Effici
et Resource utilization |

Figure 8- ISO/IEC 9126 quality model for external and mtd quality

Figure 8 presents the hierarchical structure of ISO/IEC 9Xfifality model. These
subcharacteristics are measured through metriagibded in the following section. The top-
level characteristics are defined as externallyeplable features for each software system.
Different software products imply its charactedstio be considered of different importance
than others.

There arecompliancesubcharacteristics in every of the six main chiarastics that
were neither listed above Table 1 nor inFigure 8 Compliance means in general to adhere
to standards, conventions or regulations in lawsceming the high level and “fellow”
attributes at the same level. Adhering to compkafor a top-level characteristic means that
the subcharacteristics are considered.



The role of quality requirements in software architectlesign

23

Characteristics

Subcharacteristics

Meaning

1. Functionality

A set of attributes that relate to the capabilitptovide functions
used under specified conditions. The functions are thbae
satisfy stated or implied needs.

Suitability

The capability to provide an appropeiaset of functions fo
specified tasks and user objectives. Suitability al$feces
operability.

Accuracy

The capability to provide the requiredagreed results or effec
with the needed degree of precision.

Interoperability

The capability to interact witheor more specified systems.

Security

The capability to protect information ateta so that unauthorise
persons or systems cannot read or modify them.

2dl

2. Reliability

A set of attributes that relate to the capabilityaokoftware tog
maintain its level of performance under stated caost for a
certain time period.

Maturity

The capability to avoid failure as a resaflfaults in the software.

Fault tolerance

The capability to maintain a spedifievel of performance i
cases of software faults or of infringement of its ¢t
interface.

-

Recoverability

The capability to re-establish a spedifevel of performance an
recover the data directly affected in the casefaflare.

3. Usability

A set of attributes that relate to the capabilitytioé software
product to be understood, learned, used and atteatdithe user|
when used under specified conditions. Some aspect
functionality, reliability and efficiency may alsdfect usability.

Understandability

The capability to enable the uterunderstand whether th
software is suitable, and how it can be used for paatitasks ang
conditions of use.

Learnability

User's efforts for learning the softwamduct.

Operability

The capability to enable the user to rafge and control th
software product. Suitability, changeability, addgity and
installability may affect operability.

D

Attractiveness

The capability to make the softwarearattractive to the use|
such as the use of colour and the nature of the gapltesign.

4. Maintainability

A set of attributes that relate to efforts neededhtike specified
modifications. Modifications include corrections, irmgements of
adaptation of the software to changes in environmand in
requirements and functional specifications.

Analyzability

The capability of the software produto be diagnosed fg
deficiencies or causes of failures in the softwardoiothe parts tg
be modified to be identified.

=

Changeability

The capability to enable a specifiedbdification to be
implemented.

Stability

The capability to avoid unexpected effefrom modifications of
the software.

Testability

The capability to enable modified softevéw be validated.

5. Efficiency

A set of attributes that relate to the capability goovide
appropriate performance, relative to the amounesburces useq
under stated conditions.

Time behaviour

The capability to provide approgriaesponse and processi
times and throughput rates when performing a softywaoeluct
function, under stated conditions.

Resource utilization

The capability to use appropranounts and types of resourg
when the software performs its function under statmatlitions.
Human resources are here excluded.

es

6. Portability

A set of attributes that relate to the ability afadtware product tg
be transferred from one organisational, hardware dtwace

environment to another.

of



The role of quality requirements in software architectlesign 24

Adaptability

—

The capability of the software productbe adapted for differen
specified environments without applying actions or mseather
than those provided for this purpose for the softwarssidered.

Installability

Efforts needed to install the softwapeoduct in a specified
environment.

Co-existence

The capability of the software productco-exist with othe
independent software in a common environment shazsimmon
resources.

Replaceability

=3

The capability of the software praduw be used in place ¢
another specified software product for the same @erpo the
same environment. Replaceability includes upgrading.

Table 1- Quality attribute glossary (descriptions)
Table 1serves a glossary for the quality attributes usedis research. Each attribute
corresponds to a capability of a software productptovide a certain quality, which

definitions were introduced above.

3.3.6 ISO/IEC 9126 metrics

ID

Name, contains

ISO/IEC 9126-1| Software Engineering — Product quakart 1. Quality model

ISO/IEC 9126-2| Software Engineering — Product quakart 2: External quality metrics

ISO/IEC 9126-3| Software Engineering — Product guakart 3: Internal quality metrics

ISO/IEC 9126-4| Software Engineering — Product quakart 4: Quality in use metrics

Table 2 - List of ISO/IEC 9126 standards

It is not the intention of this section to give explanation what metrics are, as they
were introduced irsection 2.5.3.6but to briefly describe the metrics used by t8® 19126
quality model. ISO/IEC 9126 contains four parts emdhe general title “Software
engineering — Product Quality”. First part defireeguality model for a software product.
The second, third and fourth part suggest metriat tefine quantitative scale and
measurement method, which can be used for measyuagy attributes depicted by the first
part: external, internal, and quality in use meatriespectively. External metrics are used in a
n executable software product. Different from ex#dr internal metrics do not rely on
software execution. They are applicable in a sa#vwmoduct during development. Quality in
use metrics are used when the final software pradwexecuted only in real conditions.

Quality attribute

Metrics

Functionality - number of functions suitable for performing tasks
- degree to which the functions meet user objectives
- security inspections

Reliability - mean-time-to-failure

- probability of failure

- rate of failure, availability

- number of detected faults

- breakdowns occurrence

- repair time, time to restart after failure

Usability - training time

- number of interface functions
- input and output data items

- tutorials, demonstrations

- user observations




The role of quality requirements in software architectlesign 25

Maintainability - failure occurrence after change

- number of components requiring modifications

- time for identifying operations that cause failures
Efficiency - transactions/sec

- time to complete a task

- response time

- screen refresh time

Portability - number of target environments

- time to adapt to a new environment

- number of components affected by switching envirents
- installation time

Table 3- Example metrics

Table 3 presents several ISO/IEC 9126 metrics. These ebeasmfpustrate how
metrics can be used to verify whether the requigedlity attributes are fulfilled. For
instance, a time behaviour metric aims to measynghat is the time taken to complete a
certain task; b) how long does it take before desggesponse to a certain operation? That
means they can be used during the software artinigeevaluation (sesection 4.3.

3.3.7 Summary and remarks

There are many quality models that suggest wagealing with its quality attributes.
Presented models are similar in the idea that so&wuality is decomposed in a number of
high level characteristics, which are further deposed in a number of subcharacteristics
(attributes). Metrics (discussedsection 4.3.3 are a scale and a method of measuring these
subcharacteristics.

Models differ from each other in how software qyais decomposed, i.e. the number
of hierarchical levels and the total number of elsgeristics. McCall's [26] divided it in 11
factors, Boehm's [6] into 7 factors, whereas IS@IB126 [20] consists of total 21
characteristics arranged in 6 main areas. Sometintegh level factor from one model is a
subfactor according to another.

Literature, such as [6][20][26], provides a usetbl for discussing, planning, and
rating the software quality. Each model depicts hsaquality characteristics contribute to
the whole product quality. It is not easy to estenahich model is of the best quality.
Standards are published by a number of agencies ascANSI (American National
Standards Institute), IEEE (Institute of Electricahd Electronics Engineers) and I1SO
(International Standards Organization). They aneeliged to provide high-level, systematic
and global guidance as they often abstract frorailéet descriptions. The ISO/IEC 9126 [20]
aims to provide a rational and systematic apprdaatiealing with quality attributes. It has
been chosen as the most suitable for several rea3tve ISO/IEC 9126 standard serves a
complete set of metrics for evaluating softwarelijuand contains attributes which other
models lack in. Therefore, it is commonly used hg industry. The model also serves
solutions independent of technology and situatiSQ/IEC 9126 level of abstraction enables
to its general usage and applicability. When conmgps requirements document, the
appropriate model properties can be filled in fotuagion at hand. Specifying all
characteristics is not a guarantee for accuracy completeness. On the other hand, the
presented model provides little guidance on whaukh be measured and how the results
should be used in the architecture evaluation asri@ngly depends on the context and
purpose of its use.



The role of quality requirements in software architectlesign 26

Although quality models describe quality attribytakeir definitions are often
recognized as ambiguous and measuring the amouqiadty still remains a difficult task.
Software quality evaluation techniques allow memguseveral of the quality attributes, but
there is still lack of precise methods that could greformed in straightforward way. A
quality model is a useful tool since it brings ided# measuring quality, but nevertheless it
does not depict clearly defined methods.



The role of quality requirements in software architectlesign 27

Chapter Four — Architectural Design and Evaluation

4.1 Introduction

This research investigates the role of qualityunesments in software architecture
design, but what exactly does that mean? Softwant@tacture and its relevant issues were
defined and discussed @hapter Two. Afterwards, software quality requirements were
presented in terms of their impact on software iggcture inChapter Three. Understanding
the terms software architectureand quality requirementswith the analysis of their
relationships is the first of the several interedtthis thesis. This chapter deals with the wide
concepts of architectural design an evaluation.

First of all, there is a difference between thentearchitectureanddesignwhich are
often used as synonyms. It is said that architedtidesign, but not all design is architecture.
A related misunderstanding is about the softwamhitacture elements which are named
architectural and designelements. Of course, their usage depends of tred &bstraction
they concern. This research distinguishes betwleset terms and recommends similar
approach. Therefore, it is assumed that:

1. A software architecture is an artefact; it comwitiee highest level description of a
system structure.

2. Design (architectural design or software architextiesign) stands for an activity that
results in a software architecture. Also, designsgsis of a set of decisions made by
the software architect to ensure that the systematsnigs functional and quality
requirements.

However,architectureanddesignare termed interchangeably in practise. Oftenatheunt

of detail is insufficient to characterize the difaces [13] and the software architecture is
seen as a tool that deals with the design and mei¢ation of a structure of the system at
highest abstraction level [2]. At the same timésitegarded as one of the most important
artefacts. In consequence, a solution is requifedr example two phases can be
distinguished: architectural design and detailesigiewith respect to the abstraction level.
Another possible solution can distinguish betwerhigectural modelling and architectural

design. Either way, but software engineering shaultk a clear boundary between the
varying degrees of abstraction to avoid pointlesgsions.

“Software design is the activity performed by atwafe developer
that results in the software architecture of a egystlt is concerned
with specifying the components of a software system the

relationships between them given functional and-faottional

properties”[9, p. 390]

To summarise, in this thesis a (architectural) gless termed similarly to the above
Buschmann et al. definition as a process/activigt involves (design) decisions to ensure
the fulfilment of (software) requirements and résul a artefact called software architecture.



The role of quality requirements in software architectlesign 28

Software architecture design involves [23]:
* domain analysis and understanding the requirements,
» designing an architecture to provide architectusalutions in order to meet
requirements and desired qualities,
» allocating the requirements into components amehections,
» providing a description of an architecture,
» architecture evaluation with respect to the requeets,
» documenting the architecture with a rationale tsigle decisions.

A number of mature design methods exist. Theseviggoa series of steps for
designing a software architecture. In other wodgsign methods are ways of representing a
software architecture, usually with the help ofwse A view is a description of a whole
system from the perspective of a related set ofceors. Chapter Two presents three
following software architecture design methods:

» Reference Model for Open Distributed Processing {BDP),
e The “4+1” view model,

* Hofmeister et al. design method,

* QASAR - Bosch design method.

The last one — QASAR is especially marked in italcit is the method chosen for further
analysis. It is described in detailsections4.3.3and4.4.2

Software architecture design consists of a setegfstbns made by the architect to
ensure that the system meets its software requivesmd@he decisions made early in the
design process determine greatly the desired wgualitributes. These fundamental
architectural choices are the hardest to be furtinged. Therefore, they are the most
significant and require special attention. Thisludes the usage of certain acknowledged
architectural design techniques, i.e. patterngeRet are a proved instrument for describing
software architectures since patterns represemiugicn to a number of design problems.
Furthermore, patterns are an essential tool imsoé architecture design due to the fact they
address quality attributes corresponding to thelityueequirements of a system. Hence,
patterns are categorised in this thesis as meamsdbitectural design.

Software architecture design must in its proces® fzen activity to estimate whether
the design result, i.e. software architecture,apable of fulfilling software requirements.
Unfortunately, in practise requirements specifimasgi often lack in quality requirements
required for an architectural design and the evmloa Several methods for evaluating
software architectures have been proposed in theature [7][13] in order to assist design
methods the achievement quality requirements. Ma@edosch [7] introduced Architecture
assessments are performed in one or more develomtages. A number of the assessment
methods focus on analyzing a single quality attebi@ihe concept of architecture evaluation,
the available techniques and a detailed discuss®presented isection4.3.

Architecture views divide the architecture intotpawhere each of them describes the
system from a different perspective and focus asehaspects that address the concerns of
stakeholders. This research has two goals of wsavgs:

» different views exhibit different quality attribigeimportant during software
architecture design and evaluation,

e patterns provide support in designing view modat&l in composing views based on
them.



The role of quality requirements in software architectlesign 29

4.2 Patterns
4.2.1 Definitions and categories

In practice, architectures are usually not devadlofrem scratch. The usage of
patterns is an important tool for building high-tityasoftware architectures [9]. Patterns
have been briefly discussed section 2.7 This part brings patterns closer to the practical
area of this research — the recommendation framewBuschmann et al. [9] give the
following description of a pattern:

“A pattern for software architecture describes a particular
recurring design problem that arises in specifisida contexts, and
presents a well-proven generic scheme for its EmiufThe solution
scheme is specified by describing its constituentponents, their
responsibilities and relationships, and the ways which they
collaborate” [9, p. 8]

The terms related to software architecture inclgdoomponents, connectors, and
relationships among them are introducedention 2.1.3and will not be reminded here.

Patterns are divided further in [9] with respectheir range of scale and abstraction
into three main categoriesirchitectural patternsdesign patternsand idioms Figure 9
illustrates Buschmann et al. [9] categories. Amttiiral patterns define overall structuring
principles. They define templates for concretevgalfe architectures providing system-wide
organization schemes that refer to the system ahae. Their description and detailed
concept is presented furthersaction 4.2.4

“A design patternprovides a scheme for refining the subsystems or
components of a software system, or the relatigsshetween them.

It describes a commonly-recurring structure of camioating
components that solves a general design problehinat particular
context.”[9, p. 13]

Table 4 illustrates the difference between architectuettgrns and design patterns.
Although the idea originates from the confusionwssn architecture and design as
synonyms, the concept remains the same — the ¢td\adstraction is the difference. Design
patterns are medium-scale patterns that regardaesmaller architectural units in contrast
to architectural patterns. They provide structufes decomposing complex services or
components being independent of particular progremgpmanguage or programming
paradigm as it is in case of idioms. The fundamesttacture of a software architecture is not
affected by design patterns. They rather have gtiofluence on the architecture of a
subsystem or a component. There are eight desigarps introduced in [9]whole-part
master-slave proxy, command processprview handley forwarder-receiver client-
dispatcher-serverandpublisher-subscriber

“An idiom is a low-level pattern specific to a programming
language. An idiom describes how to implement paldr aspects
of components or the relationships between themgusie features
of the given language[9, p. 14]



The role of quality requirements in software architectlesign 30

Idioms represent the lowest-level patterns. Theyt déth the implementation matters
of particular design issues, specific to prograngranguages. Sometimes idioms useful for
one programming language does not find usage ithanolrhey can also directly address the
concrete implementation of certain design patteld®ms demonstrate competent use of
programming language features such as memory mareangen C++. Therefore, idioms also
are recognized as means for teaching a programtamguage and a communication tool
among developers.

4.2.2 Why Patterns?

This paper focuses on software architecture indbatext of patterns for several
reasons. These among others previously stateelcion 2.7are listed below:

» Patterns document existing, well-proven softwaohigecture design experience.

» Patterns provide a common vocabulary and undersignfbr design principles
among different types of stakeholders.

» Patterns are proven means for documenting softwachitectures structures and
rationale for design decisions.

» Patterns help to build and manage complex anddggeeous software architectures.

These are a general rationale why patterns are tsedddress the software
architecture design activity in this research. Hesve following reasons deserve more
attention in discussion.

Software architecture evaluation is performed t@asoee quality attributes, so these
can be compared to the quality requirements. If @nenore of those requirements are not
fulfilled, the architecture needs changing in ortteimprove its quality attributes. Bosch
emphasizes in [7, p. 116] thatith each architectural styl%there is an associated fitness for
the quality attributes”and that is why the choice of the most suitalbotditectural pattern
depends on the system’s quality requirements.

If a quality attribute is not covered, there ar® tiypes of change — either change the
software architecture context or change the achite itself [7]. Of course, assuming that
the context or the requirement specification cooltt be changed, the architecture is
subjected to new design decisions such as thetectinie transformation discussed in
section 4.3.30ne of the method of transformation mentioned inggosing an architectural
pattern. This is an excellent example how pattétns the software architecture design and
bridge the gap from the requirements to design.

Buschmann et al [9] and Bosch [7], present styles patterns in terms of quality
attributes. Those literature depict both, posiavel negative quality attribute impact so that
patterns alternatives reveal its strengths and messes. Most quality attributes assessments
regarding patterns will base on these sources.

Patterns applied late in the development cycle lievanore costs. They are used to
shape the architecture at the very beginning oflsgn. Hence, patterns as an approach to
designing software architecture should be consitiénethe first place to find the most
suitable architecture.

3 Jan Bosch in [7] uses the tearchitectural stylesimilarly forarchitectural patterrdescribed by Buschmann
etal. in [9].



The role of quality requirements in software architectlesign 31

4.2.3 Why Architectural Patterns?

Buschmann et al. [9] architectural patterns aresehoas they are specified in a
context that allows for the practical investigatioow quality requirements that impact the
software architecture design. They were selectedngmother pattern categories for
following reasons.

A difficult task is to analyze the designed arcttibee that has not yet been written
down. Patterns that comprise the architectural rgggm have a significant impact on the
ability to analyze an architecture for certain gyadttributes. These pattern are relevant for
the analysis, while they provide knowledge for &s$ding certain quality aspects that include
specific quality requirements. In some cases, aipenodel is necessary for a set of quality
attributes. Software architecture design ensuras mbquirements, and especially quality
requirements, are fulfilled. One way to do thabistart the design process with a pattern that
addresses certain quality attributes.

Idioms depict language-specific implementation éssand this paper is an attempt to
focus on the software architecture at high abstmadéevel. That is why they were rejected in
first place. The architecture in this research &hdeal with its structure from the scratch, i.e.
from the very beginning when the fundamental deossiare taken. Different from design
patterns which address parts of the architectuge subsystems or components of a system,
architectural patterns affect the whole fundamesitaicture. Architectural patterns represent
the highest-level patterns in system hierarchy ey tspecify the primary organization
scheme for the software architecture. As everpvwalhg development activity is governed by
this structure these kind of patterns have the mmgtificant contribution to the shape of
architecture. That is why they were chosen as d&adefor software architecture design in
this research. However, software engineers shaul@miliar in understanding other patterns
beyond those categorized as architectural.

4.2.4 Architectural Patterns

An important concept in the area of software aediire are architectural patterns.
These, similarly to what Bosch recognizes aashitectural styles[7], Buschmann et al.
describes as architectural patterns due to thetliattthese both pattern types have similar,
significant usage, i.e. they set the overall systhmfundamental structure. Buschmann et al.
[9] presents a description of this concept in fofeing way:

“Architectural  patterns express fundamental  structural
organization schemas for software systems. Theyigeoa set of
predefined subsystems, specify their responsdslitand include
rules and guidelines for organizing the relationshbetween them”
[9, p. 25]

Architectural patterns define some overall struogiprinciples. They capture fundamental,
system-wide structural organizations of softwarstemys. Their primary task is to provide
descriptions of subsystems, define their respadiitgisi and specify how they interact with
each other to solve a particular design problem. d@galing with quality attributes an
architectural pattern helps to decide if softwarehéecture fulfils quality requirements. An
architect should however be familiar with othertgats well beyond those so called
architecturalFigure 9illustrates architectural patterns and their categ.



The role of quality requirements in software architectlesign 32

Patterns
| Architectural pattems |
—{ From mud te structure
Layers |
Pipes and Filters |
Blackboard |
—-{ Distributed systems |
|—| Broker
——1 Interactive systems I
—  Model-View-Controller |
- Presentation-Abstraction-Control |
—{ Adaptable systems I
= — Microkemnel |
_-{ Design pattems l r—[ Reflection |

—| Idioms |

Figure 9 - Buschmann et al. [9] pattern categories andatagories

4.2.5 Architectural Pattern categories

“Different architectural patterns imply differenbosequences,
even if they address the same or very similar gmois!’ [9, p. 27]

Buschmann et al. [9] depicts eight architecturatgvas sorted in related groups:
layers, pipes and filters, blackboard, broker, nhwtkwv-controller, presentation-abstraction-
control, microkernel, and reflection. Each arclHiteal pattern helps to achieve a specific
global system properties. Architectural patterret tielp to support similar properties occur
in categories. These categories are illustrateeignre 9 and classified into four categories
as follows. Patterns ifrom mud to structureategory support a controlled decomposition of
an overall system task into cooperating subtaBkstributed systemgnsure the complete
infrastructure for distributed applications. Patterfrom interactive systemgelate to
structures with interaction between humans and sysem. Finally,adaptable systems
support extension and their adaptation to evolv@uhnology of software applicationrsome
of these patterns belong to more than one problenyaatePipes and filters, for example,
can be seen as a pattern to deal with decomposifiansystem, and as a pattern to ensure
distribution aspects, eventually both.

4.2.6 Summary and remarks
Reuse provides with already gained quality and $omes even labour savings

through architectural reuse in the notion of pateiThe most appropriate style for a system
depends primarily on its quality requirements”, p.37]. The problem is to evaluate it along



The role of quality requirements in software architectlesign 33

the alternatives to discover which one of them iggpbest to the requirements provided.
Pattern, or a combination of patterns have a terydo repeat in similar types of
applications. That is why it is also worth to loaikother software applications which had had
similar requirements.

The relative importance of the various qualityibtites depends on the nature of the
intended system. This paper examines the quattypuates of the ISO/IEC 9126 [20] quality
model for quality attributes that are of particulaterest to architectural patterns discussed by
Buschmann et al. in [9]. Quality attributes shobkl considered during all phases: design,
implementation, and deployment. Not all of themspreaed in [20] can be addressed by the
architectural design. These are mostly developented quality attributes due to the fact
that it can not be measured how architectural petteinfluence e.g. usability or
attractiveness. It will be clearly stated when &ty an architectural pattern has a passive
influence on quality attribute(s).

Architectural patterns allow to reason about tlghHevel design of a system before it
is implemented. As they are applied early in thsigle activity, they represent the first
approach in achieving system’s quality requirememdsarchitectural means. The choice of
an architectural pattern depends primary on théitguetributes that are to coveiAnother
objective of patterns is to build software systevith predictable non-functional properties”
[9, p. 392]. They started becoming an importantreagh to sharing design knowledge by
sharing an architecture description that favoursioders certain quality attributes.

Mapping quality attributes to architectural patgeis not an easy task and there is no
automated way to do this. The solution is to havality attributes as an input, and as output
get a software architecture based on architecptterns that fulfil quality requirements.
This results in an architectural patterns as a atketior achieving software quality. This
should relatively bridge the gap from the qualigguirements to software architecture
design.

The purpose of software architecture design isrgate a system that meets its
functional and quality requirements. The structine architecture of is much related to what
that system has to do. This is the reason why s\steith similar requirements have also a
common software architecture. This leads to reuse existing, well-proven design
knowledge, and what is important from the pointho$ thesis:

» document existing software architecture experiga@mmon design problems,
* use similar specification of quality requirementswhich structures and to what
degrees cover quality attributes.

“The earlier in the life cycle reuse is applied,
the greater benefit that can be achievéd]

Reuse is a gredtool” for systems with similar requirements, useful hafge patterns, that
impacts software architecture design in terms afessing quality requirements. The chosen
topology of components and their relationships gemoarchitectural pattern) must conform
to those requirements, not the other way arounéréfbre, a classification of architectural
patterns should be based on the quality attribineégsced by those patterns in order to be
useful.

“Your pattern selection should be further influedcby your
application's non-functional requirements, suchcaangeability
or reliability” [9, p. 27]



The role of quality requirements in software architectlesign 34

Design activity is about having a way of choosingitable software architecture.

Architectural patterns are methods of achievinglityuattributes corresponding to quality

requirements posed on the system. Different arcfuite patterns address various quality
attributes and to different degrees. Therefore,rthe of desired quality requirements has
tremendous meaning because it affects the seleofighe most appropriate architectural
pattern during the design of software architecture.

4.3 Software Architecture Evaluation

4.3.1. Evaluation theory

While quality models may be neglected as a tookfdrieving the required levels of
quality, there is no doubt about the importancenefisuring quality by existing, systematic
methods. Although, there are many that can be tes@dprove the quality of a system, this
paper focuses on one, the most important technigdech is architecture evaluation
Architecture evaluation is the process of measuon@nalyzing how well the architecture
addresses quality requirements of the system. Tdie goal is to check whether the quality
attributes of the system meet quality requiremeantd, specify those that lack. The evaluation
improves the potential software quality of the ewstbefore it is implemented. It is
performed when the design of the architecture tsgood enough, i.e. when it does not meet
quality requirements. The assessment results ama@ortant feedback to the design process
to be able to improve the architecture. A numbeanethods have been developed to evaluate
quality related issues of software architecturethet design level. These methods serve
several alternative designs or their variationsseSsment provides the tool for comparing
and eliminating design alternatives, thus redudimgpotential solution area. In consequence,
the design after evaluation should be of highetityuaecause it improves design knowledge.
Design knowledge defines documented and commuaitgtroven design solutions to
recurring problems, i.e. patterns chosen as agoastise for existing knowledge.

The design process may choose many solution p@tsourse, the design process
itself runs more effectively since there are ledstfons to be discovered. Concentrating on a
system quality attributes, for example, specifiesumber of paths and hence — its branches.
Each of the required quality attributes probablgdsea different solution. This increases the
number of potential solutions to choose from. Ashéect should concurrently consider
several patterns in order to select a suitabletisoluHowever, too many design alternatives
may cause a negative effect on the process. Haofyare architecture design should be
combined with evaluation of its quality requirengeas the most optimized tool for solution
searching.

Architecture evaluation allows to measure and olesdhe quality attributes of
software architecture design after the design igtikas been accomplished or at the
specified level for analysis. Assessing qualitynportant due to the fact that the lack of
quality is expensive, and may cause a system totaly useless.

4.3.2 Aims of assessment

Bosch [7] identified three approaches to softwadhigecture evaluatiomualitative
assessmenguantitative assessmeitheoretical maximum or minimurithe first is used to
compare two candidate architectures, which resaoltan ‘boolean’ answer stating which
architecture is more suited for investigated quadittribute (e.g. architecture A is more
situated for performance than architecture B). 3éeond is used where quality attributes are



The role of quality requirements in software architectlesign 35

given in numbers. Quantitative metrics help to measif or to what degree, a system
satisfies a quality requirement (response timenteaance cost, transactions per time unit,
etc.). Quantified quality assessment results candoepared to the pre-set quality goals for
the overall quality. Quantitative interpretatiormutd be graded, e.g. by the impact of quality
attributes on software architecture. Grading canauscale presenting the impact such as {-2,
-1, 0, +1, +2} which determines respectivéligh negativenegative passive positive and
high positiveimpact of a software architecture structure oradiqular quality attribute. The
third goal is about determining the gap betweersgme and the theoretical maximum or
minimum level for a certain quality attribute ofadwated architecture.

4.3.3 Techniques for Architectural Assessment
Introduction

The studied techniques for architectural assessiéow to make qualitative and
some quantitative statements at certain level @umcy about quality attributes at the
software architecture level. This means that qualitributes that can be addressed by the
architectural design can be evaluated or measuyathst the software architecture [7]. Of
course, analysis applies to the system at desigah éand is limited to those quality attributes
that can be verified using an architectural desionp This means that not all, but many
relevant quality attributes can be evaluated betfogeapplication will be implemented.

This part discusses several techniques for softaeskitecture evaluation that were
found interesting or useful for the purpose of tieisearch.

Scenario-based assessment

Bass et al. in [2] emphasizes that quality attesuhave meaning only within a
context and this led to adopt scenarios as thew avay of describing the mentioned quality
attribute(s) contextScenariois defined asa brief description of a single interaction of a
stakeholder with a systenf2, p. 192]. In other words, a scenario is an imstaof a use case
(specified set of steps performed by a user orsyiséem). It helps to compare and contrast
candidate architectures to validate their requigedlity. Using scenarios makes quality
requirements more concrete to the architect.

A usage scenario (used in a usage profile) focasethe system under a typical
usage. It can be used during the assessment gbaatmnal quality attribute(s). A change
scenario (used in a change profile) describes afioaiibn or a general change to a system.
Each scenario focuses on one quality attribute, giteh several scenarios are created that
stresses the same quality attribute, but from wiffe perspectives. Scenarios can be used to
evaluate quality attributes such as maintainabitihangeability, etc.

Scenario based assessment is a structured andlifmthtechnique to assess design
decisions. A great example of its usage provide®©IPBé Bengtsson in hisArchitecture-
Level Modifiability Analysis'T4].

Simulation

Scenario based assessment is static in that natekée model is usedimulation
uses the software system’s context, its environméft certain abstraction level to execute
the model. The system behaviour is used to préggcsoftware quality attributes. Prototypes
are similar but in the opposite of simulation tlaag used to execute an intended part of the
architecture. Once, a context and a high-levelwsoft architecture implementation is



The role of quality requirements in software architectlesign 36

available, scenarios can be used to evaluate releyaality attributes. Simulation of the
architectural design not only evaluates qualityilautes, but also functional aspects of the
design [7].

Mathematical modelling

Mathematical modellingis an alternative to simulation because they avéh b
appropriate for dealing with operational qualitiriaites. Mathematical modelling allows for
static evaluation of architectural design modelsmakes make predictions about the potential
gualities of a resulting product using a varietynodtrics. Mathematical models are unique
for each quality attribute [7].

Experience-based evaluation

The liability of evaluation methods is that theyoyide subjective and qualitative
assessment. Nowadays the most common way to @eatechitectural structure is to rely on
objective reasoning based on previous experiences laegical argumentation. Experts
(experienced software architects) provide their oxafuable insights and suggestions that
proved to be efficient and help to avoid bad desigasions. This approach is different from
previously described in that the evaluation progsedess explicit and formal. It is based on
subjective factors such as intuition, feelings, aational thinking. This kind of analysis
process usually starts with a feeling that somethlimes or does not fit [7]. “Good” or “bad”
designs have a large tendency to bring negativgtsesut this approach should never be
underestimated as it is still the most popular ased in industry.

Experience-based means reuse of existing knowledgece, patterns introduced in
section 2.7facilitate widespread reuse of software architectirom early phases in the
development lifecycle. Patterns help to capturstang, well-proven experience and promote
good practices in solving design problems. They laudt upon collective experience of
software architects and engineers. Best desigrersotinvent new solutions distinct from
existing ones. They rather tend to look at soliionsimilar projects and reuse the essence
of the previous solutions into the new project [Bherefore, patterns are commonly used in
software architecture design, not only becausénefeixperience-based knowledge, but also
for constructing software architectures that adsloestain quality requirements.

Metrics

A metric is a “the defined measurement method &ednteasurement scale” [20, p.
20]. Software metrics are proposed not only duriing architecture evaluation, but also
during an early architectural design. They intemtheasure and assure system’s quality.

Software quality metrics are divided into threeegatries:process metrigsproduct
metrics andproject metrics Process metrics present guidance how to impreveldpment
and maintenance of a software product. Product icsetre used for describing the
characteristics. Project metrics specify the ptojharacteristics and execution.

Metrics can are used to find, measure, and moqgiatity attributes that are prone to
problems. Metrics serve quantitative interpretatisach as number of transactions per time
unit. In order to use them, software architectuas to provide an level of details. Otherwise
there is no data to perform the measurement on.edery most of the metrics deal with the
measurement of already implemented systems ralfaer based on the results of early
development phases.



The role of quality requirements in software architectlesign 37

Though, many methods and external metrics of etialuaxist in the literature, but
they tend to focus on one quality attribute andrgrthe others. Also, many software quality
communities focus on specific quality attributesd aanalysis techniques. There is a
community, for example, that focuses on softwarstesy performance software metrics.
Again the same example by PerOlof Bengtsson [4grevine concentrates on evaluating the
architecture modifiability characteristicSometimes, it is not even possible to evaluate a
software design to understand a single qualitybaitie. As it was inducted isection3.2.4
some of them influence each other (positive or tiegampact), such as the mentioned
modifiability and performance. Hence, even isolgtijuality for evaluation can be a difficult
task.

SAAM

Scenario-Based Architecture Analysis Meth@&RAM) [2] specifies how well an
architectural design responds to the demands plaicedby a set of scenarios. SAAM relies
on a description of candidate architectures thextifly relevant components and connections
and the overall system behaviour to gain a morepbete understanding of them. Competing
architectures are compared against each other ssimtar scenarios with assigned weights
of their relative importance. SAAM produces a sétneetrics for each scenario. These
scenarios are evaluated by investigating whichigrctural elements are affected by them.

The method consist of six steps:

Scenario development.

Architecture description.

Classification of scenarios.

Individual evaluation of indirect scenarios.
Assessment of scenario interaction.
Overall Evaluation.

oukrowpE

ATAM

Architecture Trade-Off Analysis MethddTAM) [12] developed from SAAM is a
comprehensive way to evaluate a software architectti reveals how well an architecture
satisfies particular quality attribute goals. ATA®&kplicitly address interactions between
multiple quality attributes, and recognizes tradfs-between them. It uses scenarios for that
purpose. ATAM requires several different architeatwiews: dynamic, system, and the
source view. ATAM'’s specialities are: modifiabiljtgerformance, availability, and security.

Bosch architecture assessment

Jan Bosch in [7] proposed architecture evaluatgr part of the design process. The
method consists of three main phases: functionbbyed design, quality attribute
assessment, and architecture transformation. Tdgtos outlines the two last phases in
context of the architecture evaluation. The ovarathod description is presented in detail in
section 4.4.2
Bosch identified the following techniques for asseg quality requirements:

* scenario-based assessment,
e simulation,
* mathematical modelling,



The role of quality requirements in software architectlesign 38

* experience-based evaluation.

Besides these, Bosch also mentions about metatsth concerned with quantifying various
aspects of software. However, most metrics appemcperform measurements on
implemented systems instead of software architecatirdesign level. Each technique may
have different assessment goals:

» qualitative (relative) assessment,
» (uantitative (absolute) assessment,
» assessment of theoretical maximum or minimum.

The techniques and their approaches have alreasydefined in detail in previous sections.
Once, the quality attributes have been assessedyuitomes are compared to the expected
values in requirements specification. The goal leé guality attribute assessment is to
evaluate the potential of a software architectuwreensure the fulfilment of its quality
requirements. If one or more quality requiremente ansatisfied, the architecture is
transformed to cover the missing requirements. llIf estimated quality attributes are
satisfactory, the architectural design processoimpieted. Bosch identified five following
transformation methods:

» imposing an architectural style,

* imposing an architectural pattern,

» applying a design pattern,

* converting quality requirements into system’s fumcdlity,
 distributing requirements.

Architecture transformations are illustrated Rigure 10 where they are distinguished by
their scope of architecture changes and the tramston type. Transformations change the
structure of the architecture; they affect qualigributes, but not the functionality. In
consideration okection 3.2.4where quality attribute relationships have beerestigated,
each transformation (so called quality attributérojzing solution) improving one or more
quality attributes may affect others negatively.

Component Architecture

—>  Scope of unit
Added

functionality, CS;‘-’FH 5 Ir':_l:osze |

rules and/or i GI'L mF-‘ItTC ura
constrains i attern
Apply Impose

Restructuring Design Architectural
Pattem Style

Transformation type

Figure 10- Architecture transformation categories



The role of quality requirements in software architectlesign 39

4.3.4 Summary and remarks

“People often want to analyze software architectunath respect to
guality attributes expressed using words such amtaiaability,
security, performance, reliability, and so fortf2, p. 191]

There are methods and external metrics to use demeon what quality attribute is
to evaluate. An activity of analyzing a systemihdecture in order to understand its quality
attributes described by Bass et al. is called tlohi@cture evaluation. In order to check
whether software architecture fulfils its requiremss it needs to be assessed. It is impossible
however, to verify explicitly if all quality attriltes of the final system were addressed based
on the design itself.

Evaluation is about how to assess the systemmmstef the quality requirements. The
basic goal is to evaluate the potential of the whatd architectures (which ones should be
rejected), with respect to qualities and their im@at during the design phase. Candidate
architectures in this research, i.e. candidateiteatral patterns will be evaluated with
respect to a set of desired quality attributes, tanghcover recommendations for best design
practices.

Architecture’s main goal is the system quality. fifere it should be analysed and
evaluated early, when early design decisions akentdo achieve the system’s quality
attributes. Evaluation should be performed befbeeproblem arise, i.e. at the very beginning
parallel to development process. However, studdtivare architecture evaluation methods
are ought to be performed right after the desigs ecanplete [7].

Evaluation, done properly, will definitely lead itecreased quality not matter at what
stage of architecture design it is performed. Haveguality cannot be completely assessed
during architectural design. It onljassesses the ability of the architecture to supgbe
desired qualities”[2, p. 191]. Software quality cannot be addedht architecture — design
process should constantly take into account itsomamce. Problems found early are easier
and less expensive to correct.

When evaluating quality requirements, a genergb@sg evaluation technique can not
be used for all quality attributes. Different gixakttributes must be evaluated using different
techniques since, as it was presented, technigudstd specialise on revealing weaknesses
of one, or small number of attributes.

One of the greatest problems of software architeafesign is the lack of quantitative
methods for evaluating quality requirements of ps®d designs. Nevertheless, architecture
evaluations help to detect and hence, reduce #keofi having a system with insufficient
guality. The measurement of quality attributes dispwhether quality requirements will be
fulfilled by the architecture or not.



The role of quality requirements in software architectlesign 40

4.4 Quality requirement-oriented design method
4.4.1 Introduction

In recent years, software architecture design enanportance is widely recognized
in software engineering. As indicated earlier, aiocal issue during the design and
construction of a software system is to fulfil fsquirements. Software requirements are
divided into functional and quality requiremensegtion 2.§. A traditional approach is to
develop a software architecture that results frorsea of design activities that provides
desired functionality. In general, functional regments determine what the system does.
The design activity should however address botthe$e requirements. A key task that is a
difficult challenge for architects is the transf@tmon from quality requirements into software
architecture. Despite little progress, this aréhefdesign remains relatively immature.

While the functionality of a system is handled bynamber of well-proven
development methodologies, the quality objectiviélé require effective support. Quality
requirements in current practice are covered byhad decisions that often rely on
experienced-based evaluatiosegtion 4.3.3 of architects. This gap intensifies a need for
tools and techniques that support a systematiceaement of quality requirements. Since
their significant importance is proved in many riire sourcesséction 4.}, the design
should handle them in the first place. This padpoeses an approach that covers quality-
related issues in software architecture desigisit f

4.4.2 Bosch design method in context

Quality Attribute-oriented Software ARchitecturesig@ method(QASAR) [7] has
already been mentioned in this paper among oth&luation techniques since it enables the
software architecture assessment. However, it 8 a mature design method with
incorporated practise for addressing quality rezqagnts that provided inspiration for the
proposed method. Hence, it is presented here.

QASAR consist of three main steps:
» functional-oriented design
» quality attribute assessment
» architecture transformatian

It starts with software architecture design basedunctional requirements. During this step
quality requirements do not receive any particaldention. The next step evaluates quality
attributes in the system using a number of scermmoéiles either complete or selected. The
transformation, being the last step, is performéenvthe architecture is not good enough —
does not meet quality requirements. Transformatian, modification and evaluation, is
conducted iteratively with respect to the qualiguirements until the evaluation shows that
they are satisfactory fulfilled by the proposedh@tecture. The method do not focus on a
single quality attribute, but provides an instrumnfam the assessment and reasoning about a
set of desired attributed. The main disadvantaginas the method deals with functional
requirements at first. Large amount of resource& Heeen used without verifying whether
the architecture fulfils quality requiremenksgure 11 presents the QASAR activities.



The role of quality requirements in software architectlesign 41

Functionality-based | Reguirement
architectural design spacification

Software
Architecture

Architectu_re OT fulilled Quuality Aftributes
transformation assessment

r X

Y

Tulfilled
QA-optimizing
solutions

Figure 11 - Quality Attribute-oriented Software ARchitectutesign method

As it was indicated irChapter Two, several architecture design methods have been
proposed. Examples of these that are discussddsirintesis include the “4+1” view model
[22], Hofmeister et al. design method [16], ReferModel for Open Distributed Processing
[19] and Bosch design method [7]. The methods diffe where they put their focus during
the architectural design. Many of these pay litHention to support explicitly the
development towards the quality requirements. Thiestgn methods vary with the number
of contained activities, notations, design aims abgctives, etc. However, all of them have
one thing in common, i.e. requirements specificatis used on input and a software
architecture is given on output. This means thahigectural design can be viewed as a
function [7]. Despite this fact, design methods moean automated process and much effort
is involved.

Bosch indicates that several other authors in t@iventional object-oriented design
methods pay little attention to quality requirenseand the architecture focuses on achieving
the desired functionality of a system. To sum ungre is a lack in software architecture
design methods that which explicitly support theaedlepment towards quality requirements.
Hence, this quality requirement-oriented designhoets proposed.

4.4.3 Method activities

The introduced model is a quality requirement-dadnsoftware architecture design
method. It iteratively assesses the degree up tohwthe provided architecture supports the
quality requirements. There are four activitie®. iquality requirements-oriented design,
quality requirements evaluation, functional reguoiemt-oriented design and functional
requirements evaluation. The proposed approach twsesartefacts, i.e. requirements
specification and the software architecture. hssumed that the requirements specification
is divided into functional and quality requiremens® that each design orientation uses
corresponding requirements categdfigure 12 illustrates the proposed design method.



The role of quality requirements in software architectlesign 42

? T

fulfilled
RF v
— QR— — — — 1 —p QR-oriented design j4—NOT fuffilled Estimate QR
|
|
| fulfiled
L 4
Requiramants Software 2 Estimate FR
specification Architecture ik
F3

I
I
L FR— — — — — FR-oriented design MOT fulfilbed-

Figure 12 - Quality requirement-oriented design method

The objective of this model is to design a softwarehitecture that targets both
requirements types of a system. In opposite QASAR,design process starts with a design
of a preliminary version of the software architeetbased on quality requirements specified
in requirements specification. Then, the softwarehitecture is evaluated in terms of
functional requirements that were not consideredhi previous step. The estimates are
compared to the expected results from the requinésmgpecification. If these indicate that
results are not met by the current architecture ftmctional requirement-oriented design is
performed until the architecture fulfils its furmtial requirements. Quality requirements are
not considered at this stage. Then, the functigndksign is further evaluated, but this time
the quality requirements are the subject of assessnif the outcomes determine that the
architecture does not met its required quality mesoents, the design towards the missing
quality requirements starts iteratively again. @thse, the software architecture design is
considered as completed. Since the last evaluat@mrsiders quality requirements, this
ensures that every functional modification of theh@ecture is evaluated later with respect to
the quality requirements. The proposed design ndetddfers also as the QASAR
architecture transformation is not a separate iactitbut a part of the quality requirement-
oriented design.

4.4.4 Method example

The following example is given in order to illuggahe intention and usability of the
proposed method. As it is proved @hapter Three, quality requirements are crucial to a
software system. Therefore, if possible they shd@daddressed as early as possible by the
design activities — in software architecture desigms research discusses the concept of the
high-level design before committing into detailegsign. Dealing with quality requirements
at the very beginning helps to fulfil several gtyakttributes, for example maintainability.
Maintainability is recognized as the ease to maqdifyprove, correct, replace or adapt to a
changed environment a software system or compof@etlevel of maintainability depends
how strong components are connected with each.dimeapsulation of these components is
a method of achieving maintainability as they ibeumodularization strategies that reduce



The role of quality requirements in software architectlesign 43

the effort of modifying the system. The idea of fw®posed method is to deal with the
desired quality attributes of a system at firse. ibefore functional requirements are
addressed. Decomposing the system into a certambeu of components addresses the
quality requirements regarding maintainability, dref taking into account the functional
requirements. Afterwards, the functionality of asteyn can be placed on these components
that fulfil the desired quality attribute which this example is maintainability. However, a
number of quality attributes can be situated betheefunctional requirements are handled
such as:
» efficiency — “volume and complexity of intercomport communication and
coordination, especially if the components are majiy distributed processes” [2, p.
32)),
» security and safety — determine a component faesysuthorization, error checking,
data encryption, etc.),
 reliability — component(s) replication, implies tediancy strategies),
» portability — similarly to maintainability — encagate a component that can be
replaced in order to migrate to a different envingmt),
 flexibility — making the system configurable
» fault tolerance — component(s) for exception hangli

In general, these quality requirements strategm®Ilve of ensuring the existence or a
specified order (decomposition) of one or more congmts (mechanisms) that fulfil desired
attributes of a system. It is also worth to mentilbat all of these abstract from the system
functional requirements. Therefore, the proposedhatk find its usage in software
architecture design activities.

4.4 .5 Benefits and liabilities

This section serves a rationale on benefits aruilitias of both Bosch and proposed
design methods regarding relevant architecturakss

Bosch himself describes the two main liabilitieshaf approach. These liabilities also
concern the proposed approach. They are listedeept similarities with Bosch method and
to realize the required model rework. Firstly, aitquality attributes can be evaluated until
the system is put in operation. Secondly, if thetgbutes (categorised as operational) are
measured when the design is completed, much relasko be done in order to include the
modifications. Incorporating these modificationsuk generally in total resource usage.
From personal findings, the changes may also niotgbexpected outcomes, and even
decrease the level of achieving quality attributds. it was indicated irsection 3.2.4
attributes may influence each other positively agatively. Though, implementing
modifications to a quality attribute may hindereth Even if the fulfilment of an attribute is
achieved, such procedure may result in total lcsedware quality.

Moreover, Bosch indicates that having a functiagddiased design may result in
needless design efforts as the system was dirémteatds functional requirements and lacks
in quality requirements. Bosch method is more madiifon-prone since in most cases the
first iteration requires transformation. Therefdtee proposed method benefits from the start,
even when there is no conception of exactly whighcfional requirements should be
supported and in which way. The early quality regmients-oriented design allows for the
achievement of global quality attributes that coaist the architecture on the highest
abstraction level. This design in the first stegliuto decompose the system into top-level
components similarly to Bosch architectural styl§sand Buschmann et al. [9] architectural
patterns. These styles and patterns are used ftwvilea structure of an architecture from the



The role of quality requirements in software architectlesign 44

scratch, when the fundamental decisions are tal&nce they specify the primary
organization scheme for an software architecture, quality requirements can already be
addressed, even before the functionality. ThiggisiBcant because it allows to:

a) save much effort on and reduce the number oflitgueequirement evaluations,
b) avoid modifications caused by the lack of gyatgéquirements during the functionality-
oriented design, especially during the first itenat

QASAR does not consider a situation when the achital transformation affects
functional requirements. Bosch says that the fonelity is stable so that the idea behind the
transformation is that a system has exact functlefere and after a transformation. The
differences occur only in quality properties ofaohitecture. However, incorporating quality
requirements may influence negatively the spediboaof functional requirements. Also,
functional requirements may have to be sacrificedrder to meet the quality requirements,
especially when these quality requirements imphet whole architecture. Even though a
guality attribute estimation resulted in a transfation required to fulfil the missing quality
requirements, QASAR considers the functional resjognts to be covered. The proposed
approach takes into account such a possibility.

The proposed approach also considers an activiighmvaluates the functionality-
oriented design. It estimates whether and to wh&tné the functional requirements are
covered, i.e. are the required system functionwjcas available. Such procedure allows for
monitoring the development progress and handlessithation of functional requirements
variability. Moreover, if a close collaboration teten the two design types is considered,
functional requirement-oriented design may depemdjwality requirement-oriented design.
This means the iterations of functional requirermgnted may include a design that
addresses a part of the functionality. Then, tloigvidy is intermitted to fulfil the quality
requirements of the obtained functionality part atal ensure some quality-related
background issues for further functionality-basedign.

The model also benefits in having similar developterogress towards both types of
requirements. Bosch concentrating on functiondégves quality requirements completely
aside. The proposed method balances more or lesecthevement of both requirements at a
time. This may help to control the progress aninjorove the workflow understanding.

4.4.6 Summary and remarks

The challenge in software architecture design isl@eelop a system that fulfils its
requirements. Traditionally, design methods conmegaton the desired functionality which
alone is not sufficient to achieve the right qualiével. It is therefore necessary to get an
early quality requirements achievement of the tesykoftware. Bosch’s approach is a good
example of a design method that covers qualitytedlagsues, but the functional requirements
are considered at first. Maybe an approach of dgalith quality requirements from the very
beginning would in consequence result in highetvare quality levels compared to the
resources used in architectural design. The praposelel serves such a solution.

It is not the subject of the presented model tesssvhether the existing design
methods are better or worse, but to consider algessoftware architecture design guided at
first towards quality requirements. As the proposeddel attempts to bring quality
requirements closer to software architecture, ntesea solution to the research investigated
in this thesis.

The proposed model activities are left to the aedhito be conducted in a fashion that
seems appropriate. It only emphasizes the ordéelesign activities which contribute to the
fulfilment requirements categories. The main chajie facing the proposed model was to



The role of quality requirements in software architectlesign 45

find an optimal balance among typical design atéigi in order to make a software
architecture address at best its quality requirésnen

The proposed design method similarly to QASAR carséen as a function. It takes a
requirements specification as an argument andtsesul software architecture. Neither the
proposed or QASAR design method is an automatecepso They both require much efforts
and creativity from the architects. To summarikere is a lack in support for design towards
quality requirements. The following chapters prégba recommendation framework, i.e. an
automated approach to fulfilling quality requirerneia architectural means.



The role of quality requirements in software architectlesign 46

Chapter Five — Empirical approach
to Recommendation Framework preparation

5.1 Study design
5.1.1 Empirical research

This chapter focuses the methodology used in #ssarch. Since one of this thesis
objectives is to improve the way that quality regments are handled in software
architecture design, an empirical method seemtthé a suitable solution. It is chosen for
achieving this goal due to the fact that it reveaisv others deal with such problem in
practice. To gain more knowledge from society, ¢hbave been developed a variety of
methods of that enable information collection andlgsis. There are two commonly used
aims of assessment describedsection 2.5.2 differentiated on the research result type:
gualitative and quantitative. Quantitative assesgmequires a construction of a set of
numerical information on large groups of peopletiyh questions with a suitable scale for
data measurement. The subject matter of a reseadhts expected results influence the
method chosen for the assessment. Particular methied often associated with particular
research types. However, all the techniques dosaopport an rational scale. Hence, their
results remain subjective. The background knowlquigsented irChapter Two — Four is
introduced according to a number of literature sesirthat investigated the role of quality
requirements in software architecture design alada® issues. However, the research in this
thesis is also conducted in an empirical mannet ases questionnaire for observing and
gaining required data for the following chaptersto$ research.

This research consists of seven main steps listé¢ollaws:

Identify the research problem and purpose.

Design a questionnaire.

Collect the research data.

Analyze and interpret the results; make conclusions

Specify recommendation framework concepts; inditateusage steps.
Present a usage example.

Verify the validity of the proposed solution.

NooghkowpE

Chapter One determined in detail the first step of this resharStep two is described in
section 5.1.3whereas analysis and results presentesettion 5.2 are responsible for the
fourth step. The recommendation framework, itsvah context, and a usage model are
pinpointed inChapter Six. The last two research steps are presentedhepter Seven,
where a practical usage example and its furthedatdn are described.

Moreover, Chapter Eight summarizes the research outcomes and draws c@mdusA
possible future work is listed in terms of the givesults.



The role of quality requirements in software architectlesign 47

5.1.2 Aims and obijectives

The study presented in this thesis is carried ougather the required data for the
proposed recommendation framework. There are twim hitarature concepts used by the
framework:architectural patternsandquality attributes Although architectural patterns are
described by Buschmann et al. [9] and some of thgsBosch [7] is such way that their
influence on several quality attributes is investégl, but it does not provide enough data to
build the framework. Firstly, the patterns impact quality attributes is presented in a
gualitative way. Therefore, the relationships beméhem could not be compared equally.
This makes the impact immeasurable among the patt@nd even among the attributes.
Secondly, not all of the patterns pinpoint theuefice on the same attributes. The literature
investigates certain quality attributes for eachtre# patterns leaving others unmentioned.
Thirdly, neither Bosch [7] nor Buschmann et al. {8 the same quality model (ISO/IEC
9126 [20]) for specifying quality attributes. Thayg number of translations or assumptions
had to be made. These reasons prove why the divaitdata from the literature cannot be
used by the framework.

Questionnaires are commonly used since they alfowdch a large number of people
who could be interviewed. In the case of this raggat is achieved via e-mail since sending
out a questionnaire is an easy way of finding pessthat would potentially participate.
Having a large sample of people involved and thsulte generalization ensure the
guestionnaire’s validity. The results rely on expece-based evaluation (introduced in
section 2.5.3 of the interviewed persons. Questionnaire outi@e easily exposed for
analysis as they contain fixed questions that p®wquantitative answers. This is why a
empirical questionnaire technique is chosen fohegyatg the required data for the proposed
recommendation framework. It ensures that answamgng from different background and
approach of interviewees, and their further gemmaabn enable the frameworks general
usage applicability and validity.

To sum up, the objective of this study is to cdlland prepare the data required to
build the recommendation framework by examiningdehis and experts’ viewpoints and
priorities with respect to their knowledge and eigrece. As an instrument for examining
interviewed persons’ viewpoints and priorities @sfionnaire with quantitative questions is
prepared that concerns the impact of each archrgpattern introduced by Buschmann et
al. [9] on ISO/IEC 9126 [20] quality attributes.

5.1.3 Questionnaire design

This section describes the outline of the questaoen The designed questionnaire
consist of three part®art A, right after a sort questionnaire introductionslithe benefits of
answering the questions in order to encourage peapl participation. By using a
guestionnaire technique, additional informationareiing interviewees’ current knowledge
can be gained. Hence, the second pRatrt(B) serves a pre-study — an introduction to the
interviewed person. It collects background inforioratabout whether he/she has any, or in
what degree, knowledge and previous experienceeiratea of software architecture, quality
requirements, and architectural pattefdart B was added to the questionnaire due to the
threats to the validity and reliability of the syudin order to avoid that, if someone marks the
answers that prove his/hers unawareness to thecubjese answers will not be taken into
account in the final study results.

Part C starts with a short introduction followed by eigfiestions. Each of these
main questions contain six subquestions. The ingtdn ofPart C serves a reminder of two
main concepts used in this part, i.e. architectpatlerns by Buschmann et al. [9] and quality



The role of quality requirements in software architectlesign 48

attributes categorised in ISO/IEC 9126 [20]. Thimgedure helps to clarify what the
guestions are about so that every interviewed persioares the same meaning and
understands them properly without any ambiguitieslso provided a pre-stated taxonomy
for the used terms. These “reminder” materials wespared due to the fact that before the
questionnaire was really distributed to respondeatpilot study was carried out to verify
whether questions used in the final version of gestionnaire will be capable of being
clearly answered. This treatment prepared the munssto be more understandable as an
interviewed person can take a look the definitibefore an answer is given.

Part C contains eight main questions due to the fact Buachmann et al. [9]
classified eight patterns as architectural. Theyrewehosen as software architecture
descriptions in this research for reasons whichevpeesented in sectigh2.2and4.2.3 The
first of total six subquestions in each of the e@tthitectural patterns questions is concerned
with an interviewed person’s knowledge about thétepa. A five-level scale is given to
measure the degree how a recipient is familiar aitbarticular pattern. The following five
subquestions contain five ISO/IEC 9126 [20] charastics (except functionality) and their
equivalent subcharacteristics. Similarly to thetfisubquestion, the remaining subquestions
are represented by a five-level scale, although dhie investigates how every architectural
pattern impacts each of the ISO/IEC 9126 [20] dyaiiodel characteristics. A legend for
this purpose is given in the introduction Rart C and it indicates the specification of
possible choices.

A scale with greater number of possible options ldiancrease the study validity and
in consequence the recommendation framework’s cworess in finding the most suitable
architectural pattern. However, a five-level scatemed to be the most appropriate as it
depicts reasonable dependencies between qualitypuddts concerning an architectural
pattern. The more answers a question has, the diidicilt it is. A possible wider scope of
choices could have been prepared, but it wouldodisge participants and increase
unnecessarily the difficulty of the questionnaard therefore making its final results useless
for the research. Nevertheless, it limits the opputy for more precise statistical analysis.

See théAppendix 2 for the attached questionnaire.
5.1.4 Summary and remarks

A research methodology is chosen approximatelytferpurpose of this thesis. This
study addresses empirically a few research quessiated in theChapter One. A
guestionnaire technique chosen for the reasongidedan the introduction of this chapter
helps to collect all the data required for furtlaeralysis and considerations. In general, it
gathers the information on how the idea of qualéguirements is recognized in practise.
Problems are identified by observing and measuhog organizations develop software
with respect to quality requirements. The domairthi$ research investigates the concepts
related to: quality requirements, quality attritajtsoftware architecture, architectural design
and assessment, and patterns. The results maysegqaence help to improve the way these
concerns are handled in practical software enginger

A questionnaire is prepared as the data colleatisirument as it is the easiest way a
large number of participants with different backgrd experience can be gathered and
brought under analysis. This will help in researebults generalization as they come from
different sources, i.e. from people with differaagproaches towards dealing with quality
related issues in software architecture design.



The role of quality requirements in software architectlesign 49

Although some knowledge is mandatory for the vaflidof the results, the
guestionnaire itself is designed as easy as pessibthat every interviewed person is willing
to answer the questions and generally finds it Brigphandle.

The preparation for the questionnaire is minimatdpends mainly on booking time
with participants and preparing printing materi@sestionnaires, ISO/IEC 9126 [20] quality
attributes glossary, and basic Buschmann et abri@jitectural patterns description, given as
reminders). The material (originally prepared ingish) was not translated into different
languages, although interviewed persons have diifenationalities (Polish, Swedish, and
others), and some of them may be unable to unaerstee questionnaire and the provided
“reminder” part completely.

Conducting an empirical research based on perserpkriences and general
observations brings threats to the results validdgspite the fact tat a number of preventing
steps are taken to decrease them, they are almpstssible to be completely avoided.
Various means have been applied in order to inerdaes questionnaire’s reliability for the
research. These methods are refined as a residedback from the pilot material given to
several students of the fifth year of computerrsmge(software engineering specialization) at
the Wroclaw University of Technology. In is not thgention of this section to depict the
validity threats since the following chapter delses not only the potential ones, but also
those that could not have been avoided during éisegd of the study.

5.2 Analysis and results

5.2.1 Introduction

This part presents the research results and fisdiltgvas aimed to understand the
role of quality requirements in software architeetatructures. Data was collected by means
of a quantitative questionnaire. The participangsergiven as much time as they need to fill
out and return the questionnaire with answers. guestionnaire will be analysed in order to
present statistical outcomes. Finally, importandiings during the study will be described.

5.2.2 Research domain

The research presented in this thesis was carugdamong two groups of interviewed
persons. The questionnaire was given to:

» students of the fifth (last) year of computer sci&n software engineering
specialization at the Wroclaw University of Teclhomy,

» Experts from industry with background knowledge wb@ractical software
engineering and application design.

The age of the target groups of people is not egievihe knowledge and experience are the
significant factors that matter. Since the quest@ire respondents have significant approach
differences, their results are obvious to diffeonfr each other. Students have academic
knowledge on architectural patterns gained from iiendatory courses attended at the
University. Hence, their knowledge is rather théioed since the lack of practical industry
experience. Different from students, the group xjfeets who participated in the research
consists of people working in large industry conipan



The role of quality requirements in software architectlesign 50

» Advanced Digital Broadcastvivw.adbglobal.com
=  Comarch Wwww.comarch.com

= Osmosys Technologies/{yw.0smosys.ty

= SiemenswWww.siemens.p|

= Silicon & Software Systemsyvw.s3group.cory

=  SMTSoftware Wwww.smtsoftware.comm

= TETA (www.teta.com.pl

Their answers were based on experience gained gduyiactical large-scale projects
development. In consequence, their answers shooddire the final results reliability.
However, investigating students should also bringitive results as they are familiar with
information from the literature. Nevertheless, theestionnaire outcomes of these two
interviewed groups are be presented separatelyiratatal. Hence, interesting conclusions
are described.

High sampling is important for validity and allowsr results generalization. The
sample size is 13 experts and 38 students, givingotial 51 questionnaires that were
collected, but 43 in total were used for measurénsn thePart B proved that the
interviewed persons were not reliable to take tih@maccount.

5.2.3 Questionnaire results

Before a statistical analysis is given, this secpoesents a general discussion on the
guestionnaire results.

Some of the respondents did not answer all the tigmss provided. These
guestionnaires are not disqualified to keep as na@ty sources as possible. Missing answers
are not taken into account; only complete casessed as the basis for result analysis.

In many cases students tend to answer in the swojpg, 0, +1] close to zero which
corresponds to passive impact. These results suggat students are either not sure about
the answer (lack of knowledge) or the answers pretéctively” marked. This is observed
not only when the question about familiarity witlpattern proved that their knowledge here
is rather weak, but also when an option correspantb high familiarity is chosen. On the
other hand, experts are not as “shy” as studehtsir Thoices tend to be rather “courageous”
as they often mark answers from the whole availablepe [-2, -1, 0, +1, +2]. This may
slightly suggest that experts were surer in thhoices, and their answers should be more
correct compared to students.

5.2.4 Data analysis

This section investigates the questionnaire restilie results involve subjects that
their knowledge proved applicability for the ress#arCollected data was analyzed through
statistical analysis and involved some interpreteti

> Part B results:

Questions one and two proved that all intervieweds@ns taken into account for analysis
participated in software architecture design. Thgugeveral questionnaires that were
rejected indicated that students have not takenhgdaan architectural design yéfable 4
depicts the total number of subjects with theirrage of attended designs. This points the
first difference between the interviewed groupsermehstudents and experts differ from each
other with the number of architectural designs.



The role of quality requirements in software architectlesign

Subject Participants | Number of designs | Designs per subject
Students 31 74 2.39
Experts 12 104 8.67
Total 43 178 4.14

Table 4 -Participation in software architecture designs

Also, respondents were asked to grade their kn@eletbout quality requirements, and
patterns in general. While the previous table stoancrete values for measuring the level of
experienceTable 5 calculates a subjective assessment of responkiemidedge about the
basic terms used further in the questionnaire. Negkess, it also proves the predominance
of experts in this research.

Subject QRs Patterns
Students 5.29 6.74
Experts 7.33 8.17
Total 5.86 7.14

Table 5- Average knowledge of quality requirements anitiepas

Part B was prepared to verify whether interviewed persognge some background
knowledge to use their answers as a source ofnr#on. Section x. indicated that several
respondents were excluded for not being applicdbte this research. Moreover, the
comparison of students and expert's values inditdaedifferences between academic and
industrial knowledge in the area of quality reqoients and software architecture. However,
these results are subjective interpretations. Maeahe student group consists of total 31
interviewed persons. High sampling allows for resgleneralization and therefore answers
given by students in Part C will also be used ierpurpose of this research.

> Part C results:

Respondents were asked to grade their familiarityh wach architectural pattern
before the answers concerning the quality attribingpact were stated. In some cases, the
relationships between a pattern and quality ateduvere identified, but the familiarity
guestion was left unmarkedable 6 presents the summary results for all architectural
patterns, where they are sorted with respect tw thtal familiarity. Whereas a green box
indicates the highest value, the lowest value withigroup of subjects is represented in
yellow. High accuracy of results is expected ampagerns with high familiarity level as
they are commonly known and recognized by respasd&amiliarity results also determine
pattern usage popularity. Hence, these results meaysed as answers for questions about
usability since popularity as general applicabiitiggests pattern usability.

The pattern familiarity may be multiplied by theluas of the relationship between a
certain pattern and its quality attributes relagiwps values. Such procedure ought to
increase the results reliability since dominantueal are given by subjects with high
familiarity. For example, a subject’s familiarityittv a layered pattern is ‘4’ corresponding to
‘good’ knowledge. Then, each relationship valueeeéry quality attribute in multiplied by
‘4’ so that if someone has much knowledge abouttéem, his answers will be significant.
Nevertheless, this procedure was not performedt agould bring even more subjective
outcomes.



The role of quality requirements in software architectlesign 52

Pattern Students | Experts Total
MVC 4.36 3.89 4.23
Layers 4,13 4,15 4.14
Pipes and filters 3.8b 3.93 3.88
Microkernel 3.35 4.20 3.82
PAC 3.74 3.67 3.71
Broker 3.41 3.72 3.52
Blackboard 3.27 3.76 3.46
Reflection 2.38 3.45 2.94

Table 6 - Subjects familiarity with architectural patters

The following Table 8 presents the final research results, i.e. dataigharther used by the
recommendation framework. These results are a @iarage of students and experts
answers. Relationships between architectural pattand quality attributes were calculated
as explained in the following example:

36 persons identified the relationship dhgered architectural pattern andaturity quality
attribute. These answers are:

Answer | Subjects per answer
-2 6

-1 12

0 12

+1 5

+2 1

= 36 persons in total

-2) L6+ (-1)[12+0C12+1C5+2[1

Naturally, provided answers were within the scope-®@ < x< 2, wherex is the given
answer. Although, these results could have beeiativby 2 for facilitation, the original
values are presented since it enables a compatsothe answers proposed in the
guestionnaire.

5.2.5 Validity and threats

Limitations determine potential weaknesses of tl@search and decrease results
validity. These are as follows:

* Small sample size:
o0 Lack of practical knowledge from the student comityun
o Small number of experts involved.
« Small assessment scale due to the number of mati{@n and attributes (16).
Hence, 48 assessments had to be conducted.
In this section, threats to the validity of thedstuare presented together with steps
taken to avoid them. During an empirical reseaheh doncern of validity and threats is of



The role of quality requirements in software architectlesign 53

high importance and needs proper consideratiorordier to avoid threats in the research
performed in this thesis, the questionnaire itsedls carefully designed thorough precise
examination towards the prior objectives for reatian of the study. However, precise
guestionnaire design does not guarantee that atheh will be omitted. Some of them
remained, but their scope was reduced due to deaféoets described below.

Construct validity, concerned with the design oésfionnaire, targets in the lack of
exact perception shared among respondents ofriims #nd definitions used in the questions.
For example, as stated section 2.3.1 quality requirements are often referred as non-
functional requirements, non-behavioural requireisiersystem properties or constrains.
Quality attributes are also recognized under diffierterms such as qualities, “-ilities”,
characteristics, or factors. Moreover, patternegatsed as architectural [9] may not be
recognized between other types of patterns. Thighig descriptions of quality attributes
from ISO/IEC 9126 [20] and architectural patterrav Buschmann et al. [9] were included
with the questionnaire as an attempt of avoiding ¢bnstruct validity.

The results can be exposed for generalization @s ¢cbme from different groups of
interviewed people. Students provide the academammedge, whereas the experts share
their industrial, practical knowledge and expergnthese two approaches in the subjected
population of data balance the input data so thattotal results should be balanced and
therefore — reliable.

As it was indicated insection 5.2.3there were cases when questions were left
unanswered. Participants were told not to mark arswhat they have little idea about. This
procedure prevents to some extent the fabricatiaata due to the fact that if a subject is not
reliable in certain questions, these will not bieetaiinto account for analysis. The unmarked
guestions were not used in final results and thesence had no influence the total validity
of the research. However, unanswered fields deeréeesparticular question’s validity since
a smaller part of the population was taken intmaot during generalization.

5.3 Conclusions and findings

The empirical research was carried out to collbet data for the recommendation
framework described in detail in the followi@hapter Six. The questionnaire in this thesis
considered two types of people involved: students experts. Their answers were analyzed
in context of both, academia and industry viewminfable x. illustrates the final and
expected research results that provide the reqdaéadfor the proposed framework.

Experts representing the industry viewpoint shatteslr experience from 7 large
companies, where the number of employees goes de3s (in case of Advanced Digital
Broadcast). Size is relevant to the study sinaeiermines the scale of company’s designs.
Also, the number of employees bears on the eladoi@td years of experience, and therefore
— position in industry. In consequence, the lag@npany is, the more reliable information
should it provide.

Students representing the academic viewpoint hdtle practical experience and
shared their knowledge gathered from courses ttiepded at university. Nevertheless, both
perspectives answers were used to prepare therégalts through statistical analyses, which
involved some interpretations. These were deterthinethreats to the study validity caused
in general by human estimations. These decreaseadberacy of measured results and
therefore the precision of the recommendation fiaonk to identify the most suitable
architectural pattern for a set of quality attrésiin question.



The role of quality requirements in software arebitire design

54

Reliability

Fault tolerance
Recoverability

Usability

Understandability
Learnability

Operability

Maintainability

Analysability

Changeability

Testability

Efficiency

Time behaviour

Resource utilisation

Adaptability

Portability

Installability

Co-existence

Replaceability

Layers

-0.47| -0.54]| -0.62

1.80

1.84

1.72

-1.75

Pipes & Filters

-1.23]-1.60| 0.81

1.75

1.73

1.71

1.83

PR
Wh D
w(iN| D

PR
wwiN
w| oo

==
R
RN

Blackboard

1.01) 1.22| 0.69

o|o|m
w(N g
INE=1ls
1
o
N
=

0.61

-0.24

0.67

-0.12

-1.28

Broker

-1.39|-1.45| -1.74

0.12] 0.33

1.30

1.39

1.25

-0.29

151

1.42

1.56

PlRRP
OO0 O
O Olo

MVC

0.86| 0.85| 1.06

1.81] 1.75

1.23

1.16

1.37

-1.34

-0.66

-0.97

-0.58

-0.43

PAC

0.69] 1.13| 0.87

1.26] 1.19

0.99

1.03

1.08

0.16

-1.13

-1.24

-1.07

-0.60

Microkernel

1.36| 1.43| 1.18

-1.50| -1.41

0.52

0.29

0.51

1.13

1.42

1.67

1.58

1.59

Reflection

0.30] -0.26| -0.47

-1.73]| -1.54

-0.42

-0.40

-0.37

-1.07

1.38

1.41

1.23

1.17

Table 7 -Empirical research data for the RecommendatiomEwveork




The role of quality requirements in software architecuesign 55

Chapter Six — Recommendation Framework

6.1 Introduction

The objective of the recommendation framework (RF§posed in this thesis is to
enable a quantified understanding of software #&chire design in terms of quality
requirements that constrain a software system. proposed method provides automated
support for deciding which of the specified arctitee structures best suits the quality
requirements in question. The context of the methed ISO/IEC 9126 quality attributes
[20] and Buschmann et al. architectural patterjsg@ chosen for the reasons indicated in
sections 3.3.7and4.2.3respectively Figure 13 illustrates the framework usage which is a
step forward of thd-igure 1 that indicated the main aim of this thesis, i.edde the gap
between quality requirements and software architeciThe idea of such architectural design
support originates from a lack of assistance dutimegachievement of quality requirements.
Section 4.4discusses this gap in software engineering amddates an approach of quality
requirement-oriented support for architectural giesiThe proposed design model puts
pressure on quality requirement-oriented designrevtiee recommendation framework finds
its usage. The framework is inspired by the worwe@hnberg et al. [30].

QA1 AP
QA:

Recommendation AP3
QA Framework

i

g
i

Figure 13 - An illustration of the Recommendation Frameworiges

Despite the background thaChapters Two - Four provide, the proposed
recommendation framework is also introduced in teainseveral new aspects which are not
mentioned earlier. Hence, the following severalisas investigate important concepts that
are indicated as a preparation for a clear framkwoderstanding.

6.2 Background philosophy

Software architecture has become an important issseftware engineering. Quality
requirements have also received increased atteriidgnthere are still no effective solution
how to handle them. Architectural design is trach#lly performed as an informal activity.
More precise and systematic approach to softwanieitacture design is needed to improve



The role of quality requirements in software architecuesign 56

the architect ability to understand and analyzedidsign activity regarding the fulfilment of
quality requirements. Insufficient research hasnbéene in this area. The recommendation
framework is an attempt of bridging the gap betweenlity requirements and software
architecture through the architectural design pecé&tate-of-the-art findings exhibit that
Svahnberg and Wohlin [30][31] had done similar aesk. The work in this research is based
on these papers.

One of the techniques in software architecture uatadn is experience-based
evaluation described in secti@rb.3 The concept of patterns is an outcome of the ezpee
of architects and designers where their knowledgdgerstood intuitively, was documented.
Software engineers have tent to reuse the samgndesiutions over and over again. Certain
ways of structuring software elements proved toehgwod properties which were preferred
in choosing certain solutions over alternative cadaigs. These design solutions were a result
of repeated appliance of software element organizaton different levels of abstraction
which generally covered different kinds of requiemts. As the size and complexity of
software systems increases it has become impadahnave ways of choosing appropriate
software architecture structure to fulfil the systerequirements. However, quality
requirements are not often addressed adequatedkigting solutions as functionality is.
Architectural patterns serve not only the basicvkierdge for good design paradigms but also
an effective tool in analyzing quality attributd®y documenting the existing knowledge,
discussions, and reasoning how a certain softwlaraents combination influences certain
quality attributes, patterns are a verified waythe achievement of quality requirements.
This recommendation framework is a systematic agagraf fulfilling quality requirements
by architectural means with the use of Buschmarah. 9] architectural patterns.

6.3 Support for design activity

“Design and programming are human activities;
forget that and all is lost”
- Bjarne Stroustrup

Software architecture design and evaluation arecayfuman activities. It takes a lot of
knowledge that mainly comes from the previous epee to manage the whole design
process. The activity itself, consist of a numblesteps such as collecting, documenting, and
managing the information relevant during the desi@ne of the most important part deals
with making trade-offs among solution alternativ€andidates are investigated carefully in
order to choose the most suitable software ardbitecdescription for the desired
requirements. The task remains difficult as iteglon experience-based estimatigeci{ion
4.3.3. Human assessment is tendentious, error-promeegpensive. That is why there is a
need of a reliable approach that could manage tbkitactural design and evaluation.
However, software engineering still lacks in sualtoanated procedures. The proposed
recommendation framework is an attempt of bridginig gap. It is created to assist the
designers fulfil the required quality requiremetitsing the software architecture design.
Section 4.4introduced a design method that focuses on quadiuirements at first

instead of functional requirements. It starts vatdesign of software architecture guided by
quality requirements of the system. The model serae basis for the use of the
recommendation framework. Architectural patterrsdusy the framework are used when the
fundamental decisions are taken. They affect thelevHundamental system structure
different from other pattern categories describe¢di that address only single parts of the
architecture. Therefore, the recommendation frankyiods its usage in the first step of the



The role of quality requirements in software architecuesign 57

proposed design method during the quality requirgroeented design. Since architectural
patterns set the fundamental structure of a systpmlity requirements can be covered
before the functionality is. Based on the prelimynarchitecture established by the
framework, an architect addresses the functiongliirements with the assurance that a
certain quality level is already achieved.

6.4 Requirements variability and management

In practise, requirements often change during tfisvare development. Kotonya and
Sommerville in [12] depict several reasons thaseawquirements to change. These include:
changes to the system environment, a better (gg)winderstanding of the customers needs,
new requirements appear, and the existing ones meedifications. Maintaining the
requirements variability becomes a critical partoam other requirement engineering
activities. It is therefore worth to mention abtle changing requirements in the context of
this design support. Failure to control and docuntie® changing requirements may result in
poorly specified, or in worst case, inappropriateldy attributes for a system to develop.
Kotonya and Sommerville [12] also offer a numbesalutions to minimize such difficulties.

The framework does not decrease its usability whenrequirements are not static.
Therefore, the concept of requirements managersembti questioned. However, due to the
fact that this research denotes the significané rol quality requirements in software
architecture design it is also crucial to focusefiective quality requirements management.
After all, requirements definition and analysishe first stage of system development and
should be carried on from the very beginning durithge requirements elicitation.
Nevertheless, requirements management is not awtyadf the architectural design in
particular, but the whole software development pssc Though, it should rather be
conducted in parallel to the design so that theiireqnents specification is always current.
Effective requirements management benefits geneiralincreased customer satisfaction as
the desired requirements are better prepared iretiigrements specification used as a basis
for further design.

In theory, requirements management is directed ridsvéhe maintenance of both
software requirements categories. Unfortunatelyt was indicated, quality requirements are
often weakly specified or even totally neglectedpiractice. The functionality is still a
predominating issue in software development, alsothe context of requirements
management.

This section discusses in general the conceptamdbility and management in the
context of quality requirements. However, the maim is to emphasize the role of quality
requirements as a method for requirements vargbilthe way the system functional
requirements are decomposed into a combinatiommiponents leads to high efforts in case
of requirements changes [7]. This is because aragant change may lead to at best a local
change in a component, or in worse case — may causember of changes in the
architecture. A proper architectural design de@gathe scale of possible requirements
variability. Additional efforts include increasedsts, schedule, erosion, resource usage, etc.
Maintainability is a quality attribute that affectise fundamental architecture. Having an
appropriate, encapsulated structure, the systerwept® from additional architecture
modifications. Though, it should be relatively pbss to incorporate requirements changes
without unnecessary changes that impact othertaathral parts.

To sum up, requirements management ensures thainthe of the proposed
framework, i.e. requirements specification, is wup date so that the system (quality)
requirements represent the actual customer needexgectations in such a way, they can be



The role of quality requirements in software architecuesign 58

used for the proposed design activity. In case pdssibility that requirements could change,
there are quality requirement methods to preveatetifiorts of unnecessary modifications.
These methods should be considered by the requitsmeanagement activity which ensures
the system delivers the expected outcomes, i.esdhgion architecture meets the actual
requirements.

6.5 Method activities
The proposed recommendation framework consistisreétactivities as follows.

1. Identify the required quality attributes.
2. Perform quality attributes prioritization.
3. Calculate the choice of solution architecture.

These are described in detail as follows:

» Step 1:
* Input:
Quality requirements from the requirements spedtifor.
e Output:
Quality attributes identified from quality requirents.

Chapter Two and Three indicated that it is crucial to ensure qualityribtites of a
system when designing software architecture. Thesgethey need to be clearly specified in
order to be properly recognized and addressed éyathhitecture. The first step of the
framework usage is concerned about identifying theality attributes from quality
requirements listed in the requirements specificatiTypically, software architecture is
likely to ensure the achievement of more than glsimuality attribute. In many cases,
several attributes are indicated from a single iguakquirement. On the opposite, a
particular attribute may be specified in a numtdeguality requirements. In case there are no
guality requirements, or the existing ones arepagkcified so that even a single attribute
cannot be listed, there is no point in using tlaenework as there is no data given as input.

It is not the intention of this thesis to presenidgnce how to identify attributes from
quality requirements. According tection 3.2.8there is no elaborate method of handling
these requirements. Therefore, more efforts shbeldirected towards eliciting, specifying,
testing and verifying quality requirements in saite engineering. Several concluding
remarks about little guidance and lack of methogiel® in handling quality requirements are
indicated inChapter Eight among other future work objectives. Neverthelesgmphasize
the vague and impressive specification of quakiyuirements Bosch [7] proposes to define
scenarios (sesection 4.3.3or details).

This step is simple to describe, although not waiaritask in practical software
development. The intention is that desired qualityibutes of a system are listed so that their
notability is understood by architects and theycagable of being used in further steps.



The role of quality requirements in software architecuesign 59

» Step 2:
* Input:

Quality attribute(s) towards which the system isigeed.
that ought to be met by the resulting software isgcture.

* Output:
Quality attributes with relative weights of themportance.

The next step is to prioritize the outcomes of fhevious step, i.e. the quality
attributes towards which the system is designed. cldmcept and importance of prioritization
has already been describedsiection 3.2.6.Nevertheless, it is worth to discuss why this
activity is one of the method’s steps. First of tils step can be excluded and the framework
will be still capable of giving design solutionsoWever, they may not be as precise as in the
case of conducting prioritization. In such case, ghiority value equals one. Having a set of
quality attributes with relative weights of themportance ensures that the most desired
attributes will be addressed in the first placeudlly stakeholders are responsible for
conducting quality requirements prioritization, butextremely important for a software
architect to establish priorities between specifjedlity attributes himself because:

a) they often tend to impact each other negatigalyh as maintainability and performance,
security and usability, or security and performaf@eesection 3.2.4 for quality attribute
relationships);

b) they are fulfilled in the architecture by diféett amounts of resources (means).

Therefore, it is highly required to perform theqpitization activity in case of these potential
conflicts. Relative weights sort quality attribuiesorder of which they should be taken into
account during the software architecture desigiorides also serve basis when some quality
attributes may need to be sacrificed in order tetrpeoject schedule, budget, etc. In case of
the recommendation framework, the irrelevant aiteb should not be taken into account
(excluded) in the usage steps.

Conducting prioritization includes subjective judgent which quality attributes are
of higher importance than the others by assignirgights (values). The greater the
differences among the values are, the more prditiaéresults are. There is no need for
prioritization when a single quality attributestéken into account for the design. Typically
software architecture is likely to ensure the aobieent of a set of quality attributes to
conduct prioritization on. The number of attributes be reduced by:

a) grouping them into categories, each represestinge aspect of the system requirements;
b) choosing a smaller set of quality attributefotmus on [30].

Prioritizing can be applied by several methods. Pheritization in Analytic Hierarchy
Process (AHP for short) as described in [30] issHamn pair-wise comparisons meaning that
each quality attribute is compared to othdfggure 4 serves as an example of AHP
comparisons where each relationship between atitisbis specified. However, AHP uses a
wider scale of possible answers — a value in ansetvour of one of the attributes in each of
pairs to compare. Svahnberg and Wohlin [31] usembraparison scale answered with a
number between 1 to Bigure 14is an illustration of such approach.



The role of quality requirements in software architecuesign 60

QA [9] 8] 7] 6] 5] 4] 3] 2 4 [ ] +2 3 +f +H 46 {7 89]QA,

Figure 14- An example of AHP quality attribute comparison

A vector (calledPQA) with assigned relative weights of importance &wery quality
attribute PQAn, wherem is a number of an attribute) is a result of thergization. This
procedure determines a precise evaluation of tloeifes and dependencies among quality
attributes in question. However, the number of AblBps and mandatory comparisons

. . (m-=1 .
increase the method’s usage compIeX|m;(Tj comparisons have to be conducted,

wherem is the number of quality attributes in questiom.chse of this research, the total
number of characteristics categorised by the ISO®R216 [20] which are applicable by the
recommendation framework is 16. This means thawimst case” 120 comparisons need to
be performed among the set of quality attributeshasvn inTable 8.

Numberof QAs| 1 | 2
Comparisons 0|1

3] 4] 5| 10| 16
3| 6

10| 45 120

Table 8- AHP comparisons per number of quality attributes

Although, it is not likely that a system must coadr quality attributes investigated by this
study, and each comparison is conducted very qui¢g0], AHP prioritization would
decrease the framework’s simplicity and generalieglpility. Therefore, an easier method is
proposed despite the fact there is slightly lesanch of choosing the most suitable
architectural pattern since more subjective weigintpposite to AHP) are assigned to the
desired quality attributes

Another prioritization technique that can be usedhe 100-dolar test. It is a very
straightforward method, where 100 imaginary unitsdistributed between the given quality
attributes. The results are specified on a ratadeswith the assigned number of dollars. For
example, 50 dollars are given@#y, 30 dollars are assigned@®y, and the rest goes @As
that summarise to 100 dollars in total. A probleithvihis technique comparing to AHP is
that there is no straightforward dependencies lexwe pair of attributes. However, the
overall viewpoint on a set of quality attributeggents quite well the required order weights
of their importance. This research suggest theoioilg, much easier method for quality
attributes prioritization similar to 100-dollar tes

1. Choose a scope of possible answers for the sreees.
1< PQ <X
where:
PQ —is an importance weight oth quality attribute,
X  —is the chosen top integer value of the scope.

2. Assign weights to the quality attributes witttie specified scope.

Each quality attribute is given a value from thess#n scope. The wider scope of answers is
chosen, the more precise the results should beit adlows for presenting greater



The role of quality requirements in software architecuesign 61

dependencies among a set of attributes. A typisaessment ten-point scale should be
sufficient.
3. Normalise the importance values.

The assigned values are normalised using the folp¥ormula to determine the relative
“distances” between the adjacent values.

where:
QAR —is a normalised weight ofth quality attribute.

Quality Attribute | Weight
QA QAP
QA QAR
QAL QAR. ;
QA QAP
Sum: 1

Table 9- Quality attributes with their weights of importanc

Table 9 presents the expected outcome of this step, ilkstaf the quality attributes
identified by the first step containing their noifirsed weights. To summarise, the purpose of
this prioritization activity is to assign values déstinct prioritization quality attributes that
allow establishing a relative order between thdituattributes within the desired set.

» Step 3:
* |nput:
Quality attributes with their relative weights.
* Output:

The most suitable architectural pattern represgntihe best opportunity
to deal with the given quality attributes.

This step makes use of the empirical researchteed@iscribed irChapter Four.
Step 3is the actual “heart” of this proposed design rodthvhere the recommendation
framework decides on a recommended architecture. “Sblution” determines a number
from 1 to 8 that corresponds to Buschmann et alaféhitectural patterns listed fable 8.
This table also contains the values required teutale the results using the following
formula:



The role of quality requirements in software architecuesign 62

maxk(zi:(QAPk * QAV,; )J = solution=k

where:
] — is the number of architectural patterns — eigtiotal.
QAW —isthei-th quality attribute value of theth architectural pattern
from Table8.

6.6 Benefits and liabilities

The most important idea of the proposed recommerddtamework is concerned
with the achievement of quality requirements. lvee a systematic approach that addresses
quality requirements via architectural means. Tioeeg it is an automated assistance for the
software architecture design activity and provideseady-made decision rationale. The
solution architectural structures consist of Busahm et al. patterns [9] that enable a
common understanding among architects. Hence, @belts are capable of being clearly
understood in terms of benefits and liabilitieseath architectural pattern with respect to its
quality attribute [30]. The use of the frameworkes much effort that would have been
spent on searching for potential architectural tsmhs that cover the desired quality
requirements. Nevertheless, identified candidatesldvhave been evaluated against each
other to choose the best applicable solution. Aisitdefined insection 4.3 software
architecture evaluation is a process of assessh&hsr architecture possesses the desired
quality attributes. The recommendation frameworkgescovers and therefore may even
replace the evaluation process. Similarly is irecafsdesign trade-offséction 3.2.7, where
quality attributes are compared against each dther) measure the relationships between
attributes as some of them influence each otheitipely or negatively; b) in case some of
the requirements have to be sacrificed in termsotbiers. The framework determines
solutions that should cover the issue of qualitsitatte trade-offs. In general, benefits of the
recommendation framework include savings in araash sas project schedule, labour,
resources, and budget funds.

The recommendation framework has also liabilitleisst of all, it does not address
the desired quality attributes equally, i.e. thehnd suggest the best opportunity to ensure at
best the given combination of quality attributes,tisey are not achieved at the same level.
Even though the prioritization step was especiatlded to the method to ensure that most
important quality attributes are taken into consatien t first place, the procedure will still
cover the required attributes by different meanbkis Tgenerally results in less precise
outcomes if a large number of quality attributesassidered.

Moreover, the data required to build the framewmkbased on the interviewed
persons subjective judgements. When applying eogbiresearch the concern of validity and
threats is important and needs special attentionthe questionnaire used in this thesis, the
threats are mainly caused by small sampling armalack of knowledge in the area of this
research. Therefore, the results do not ensurewepievel of accuracy.

To summarize:
+ addresses quality requirements

+ automated design support
+ saves much design efforts as it helps to mattegdesign activity.



The role of quality requirements in software architecuesign 63

+  tool for trade-offs

+ helps to understand the benefits and liabiliiesach architectural pattern with
respect to its quality attributes [30].

+ tool for evaluation

+ provides understanding for design decisionsafmate) as it uses patterns

— based on subjective judgements

— does not consider relationships between quatitibutes

— small probe to provide reliable data that cdaddused in practise

— the more quality attributes are in question,|&3s precise the results are

6.7 Quality requirement-oriented and pattern-basedlesign method

6.7.1 Introduction

Buschmann et al. [9] differentiated patters intoeéh categories, i.e. architectural
patterns, design patterns, and idioms. These patteover various ranges of scale and
abstraction.

» Architectural patterns (AP) help to decompose a software system into ajlob
subsystems. They set the overall structuring mplesi to express a fundamental
structural organization schema for a system. Tipegify the system-wide structural
properties.

» Design patterns (DP) support the refinement of these subsystemspfothe
relationships between them. They describe a comyvealurring structure for
components communication.

* Idioms help in implementing particular components aspetkey specify how to
implement an architectural issue using the featuoéscertain programming
languages.

This introduction into patterns categories helpsinderstand the different abstraction level
of patterns usage. Hence, they also address quadjtyirements at various levels. Patterns in
general and Buschmann et al. [9] categories haead} been described in detailsection
4.2 This section indicated certain relevant issuea sarting point for this design method’s
discussion.

Section 4.4proposed a quality requirement-oriented designhotetwhere quality
requirements are at first taken into account dumngoftware architecture design. The
recommendation framework serves assistance for anchpproach. It uses ISO/IEC 9126
quality attributes [20] on input, whereas on outipgfenerates patterns which are mentioned
above and categorised as architectural. Howevés,iitdicated that these patterns establish
only a fundamental architectural structure so quaséiquirements at top-abstraction level can
be fulfilled. Architectural patterns help to addreglobal quality requirements that affects
architecture as a whole, e.g. maintainability, abilgy, and flexibility is ensured by
breaking a system into components. However, thisig a top-level decomposition such as
in layered style, where the system in broken ir@eesal layers. Such procedure covers in
some way quality requirement(s), but does not queaeathey are fulfilled entirely since the
structure of lower-level components is not concdrneith the exemplary attributes.
Moreover, some quality requirements are not metheytop-abstraction level at all. Even



The role of quality requirements in software architecuesign 64

though a system is divided into certain subsystsimscture, it is the responsibility of these
lower components to capture the intended qualitirements. In consequence, quality
requirements are left uncovered. Therefore, arctital patterns are not enough to address
entirely the desired quality requirements. Buschmanh al. [9] categorised patterns with
respect to levels of range and abstraction. Inttedipatterns are proved to have a significant
impact on the ability to analyze architecture fertain quality attributes. All these patterns
are relevant for the design while they providekhewledge to address quality requirements.
Hence, the design based on architectural pattetesign patterns, and idioms can be
combined as they all comprise the architecturatmigson and have a significant impact on
the ability to analyze architecture for certain lgyattributes.

The proposed quality requirement-oriented and pattased design method originates from:
» the concept of quality requirement-oriented desigathod discussed section 4.4
» the idea of recommendation framework as a desigistasce for fulfilling quality
requirements,

» the use of various patterns as means for repregeswiftware architecture abstraction
levels,

» the lack of a support for achieving quality reqments at all design levels.

Architectural Patterns Design Patterns Idioms

\.\{/‘ I N

- a0
A\ 2 1 % X
Q =

LR
;I
[

o
\ u \H
Abstraction level i
-

Figure 15- An illustration of pattern categories at differafistraction levels

6.7.2 Top-down vs. bottom-up design approach

Top-down and bottom-up are strategies of desigaoftyvare architecture. These are
differentiated by the starting point of a desige, ia system abstraction level. Bottom-up
design starts by defining the low-level componemtsen moves up towards more and more
complex subsystems using these already defined dinese specified in detail, individual
components are combined together to form largetspantii a complete system if
consequently formed. On the other hand, top-dowarageh forms a fundamental structure
without going into details. Then, each decomposatl @f the system is refined by designing
in more detail. Each created part may be refinainaglefining a more detailed structure
until the entire system is decomposed in suffictetail.



The role of quality requirements in software architecuesign 65

Many architectural designs use a mixture of top+4l@amd bottom-up design. Top-
down approach is often conducted when the systedesggned from the scratch, whereas
bottom-up design is performed when a system usasn@uocial off-the-shelf (COTS)
components cause having predefined parts, a systens to be designed towards from these
parts towards the entire system. Bosch in [7] iatis that from his experience it is not
feasible to start from details of a system andettoee recommends a top-down approach.

From the position of this thesis, the choice ofiglespproach direction has no matter
as both of these strategies seem to have equalend® during quality requirements
fulfilment. Nevertheless, patterns from definitidacompose a system into components. This
means that are observed on a certain viewpoint wetl to specify in detail further
components and their responsibilities. Therefdne, groposed design method represents a
top-down approach as indicates the abstraction tBrextion inFigure 15

6.7.3 Method activities

The quality requirement-oriented and pattern-badesign method is concerned (as
the name suggests) with a design towards qualgyirements by the means of patterns. As
it is proved in Chapter Three quality requirements are hard to manage during an
architectural design. The method provides a comvgndesign mechanism for software
architecture description that allows for the fulfént of quality requirements by applying
patterns from [9]. The method starts from the hgyladstraction level of patterns presented
by Buschmann et al. (s&é&gure 15). The first step is an architectural pattern-badesign. It
results in a software architecture described imseof architectural patterns that fulfil global
guality requirements. Then the architecture isgtesil towards design patterns which results
in arefinement of software architecturethat handles particular quality requirements ¢ th
‘middle’ abstraction level. The case is similar twitioms — architecture igefined again
according to idiom patterns that fulfil the requients specific to this ‘low-level’ design.

Each method part considers different design leveébstraction. Each of these levels consist
of similar steps that include:

Identify the problem of a given design.

Nominate a pattern that represents a solutioneofjiben problem.
Evaluate the consequences of applying the pattern.

If the quality attributes in question are fulfilledtisfactory,

go to a lower abstraction level. Otherwise, repleese steps.

PoONPE

Identifying a problem is about specifying qualititridbutes relevant to a particular design
level. The activity of nominating a solution pattes performed to choose the most suitable
pattern for the given attributes. The recommendatramework which is pinpointed as a
yellow rectangle marked as RFHRigure 16 represents this procedure in case of architectural
patterns at the top-level design. The method igatgul until all the quality requirements
have been included satisfactory for the specifohigectural design and in conclusion — at all
abstraction levels. Different software architecsuege a refinement of the ‘total’ software
architecture. It illustrates the same architectnr@milar way the <<refinement>> stereotype
describes UML elements.



The role of quality requirements in software architecuesign

66

To summarize the method:

* Input:
QRs that ought to be met by the SA.

0 AP stage outcomes:

SA that fulfils the top-design (global) level QRs.
o DP stage outcomes:

SA that fulfils the middle-design (component) le@Rs.
o ldioms stage outcomes:

SA that fulfils the bottom-design (implementatideyel QRs.

e Output:
SA in description of patterns that fulfils all i@Rs
at every design (abstraction) level.

RF v
AP-based design

NOT fulfilied—

Estimate QR
f AP-based design,

fulfillad:

OT fufifléd—

Estimate QR
DP-based desig
fulfilled

Idiom-based design

DP-based design

Abstraction level

Estimate QR of
Jdiom-based desig

fulfilbed

Figure 16- Quality requirement-oriented and pattern-basedydesethod

6.7.4 Method summary and conclusions

Due to the size and the complexity of most nowadafsvare applications, a single
pattern usage in not enough. A number of or a coatlwn of several pattern is required.
Patterns are concerned with various ranges of sgaleabstraction. They can be applied in



The role of quality requirements in software architecuesign 67

different stages of software architecture desigthag help to address a variety of different
design problems. From the perspective of this shasns — to address a variety of different
quality requirements. Pattern appliance at diffeedrstraction (design) levels fulfils quality
requirements specific to these levélBhe benefits of a set of related patterns is mibren
the sum of benefits of each individual pattern se# [9, p. 381].

In other words, a combination of patterns may bipogitive results as they exhibit
different relationships with each other. To takeadage of such sets, patterns need to be
organized into pattern systems, i.e. uniformly rodthto handle a significant number of
patterns in a convenient way [9]. Hence, the predodesign method could find its usage
when a predefined assistance provided a seardlkgiréo support such architectural design
with patterns. Pattern systems ensure the guidasgpport the software architecture design
based on patterns. However, such method itself doeguarantee the fulfilment of quality
requirements. Therefore, a tool for pattern sedecis required and the recommendation
framework for architectural patterns (marked askow rectangle called RF iRigure 16)
determines the first step in the proposed approach.

6.8 Summary and remarks

As it was indicated insection 2.5 software architecture is expressed with a
combination of structural views of a system, wheach view a represents a certain
abstraction of the system with respect to differenteria. Software architecture should
describe a high-level view of a system structure twerefore - abstract from implementation
details. One of the main reasons (among otherdligtesection 4.2.3 why architectural
patterns are chosen for the recommendation frantewgothat they decompose a software
system into global subsystems representing the afmedtal organization scheme of a
system. However, each architectural view is a $igeabstraction of the architecture, for a
specific purpose. Different patterns denote difier@ependencies between components and
structural properties. Therefore, software architess cannot be based on a single
architectural pattern. Often architecture must asslla number of quality requirements that
different patterns at different abstraction lev&lpport. An architect has to combine several
patterns to form a structure that covers all ofdbsired quality requirements. Therefore, the
recommendation framework is only the first stepthe quality requirement-oriented and
pattern-based design method which satisfy all guadiquirements at all relevant abstraction
levels. Of course, the choice of architecturatgrats) is a major, but an architect has to be
also familiar with patterns far beyond these catisgd as architectural. Buschmann et al. [9]
is a good selection of patterns that presents ssand alerts of quality properties they affect.
Important is also that these patterns are idedtifieth respect to abstraction level they
concern. Therefore, they are used in this reseaktso, based on [9Chapter Seven
attempts to prove the recommendation frameworlditgli



The role of quality requirements in software architecuesign 68

Chapter Seven — Usage examples and validity

7.1 Introduction

The recommendation framework introduced in the e/ chapter is worth nothing
until its validity is proven. The validity in thigesearch is concerned with the
recommendation framework ability to provide expdatesults, i.e. choose the most suitable
architectural pattern for a given set of qualityibtites identified from quality requirements.

The framework results validity in terms of the miewed persons subjective
judgements is discussed in sect®2.6 Threats to the validity caused by conducting an
empirical research is not the issue of this pane Point is to compare whether the literature
sources reflect the outcomes of the framework.

One way to verify the validity is conduct comparisowith the literature. The
literature focuses to some extent on architecturectsires analysis against quality
requirements these architectures support. A simgélsearch has been done by Svahnberg and
Wohlin [29] in which the literature is compared aga the quantitative data from a similar
empirical research [31]. The research conductef81h will be also compared as a good
source for quantitative information. The literaturew is based on a) Buschmann et al. [9] as
the architectural patterns originate from this baokl b) Bosch [7]. These are selected due to
the fact the presented architectural structuresdaseribed in terms of their benefits and
liabilities to fulfil quality attributes. Howevethere are some limitations of such comparison.
These are as follows:

» the literature provides qualitative, whereas ttemiework quantitative information
on architectural patterns,

» the RF uses 16 quality attributes for describingepas, whereas the literature is
concerned with only several that seemed importama foarticular pattern,

* neither Buschmann et al. [9] nor Bosch [7] use shme categorisation of quality
attributes investigated in this research.

These limitations decrease the potential abilitynmiake the comparisons. Therefore, the
recommendation framework results cannot be provdzktentirely reliable. The quantitative
data of the framework is compared to the qualieainformation found in the literature. This
enables to verify only a certain extent to which framework values (s€kable 8) exhibit

the information the literature provides. Theref@eme interpretations and translations have
to be made in order to verify the validity.

7.2 Interpretations

Limitations determine potential weaknesses of thmgarison. This section specifies
the interpretations and translations have to beemadorder to compare the qualitative
information from the literature (Buschmann et &} §nd Bosch [7]) with the quantitative
data from the recommendation framework.



The role of quality requirements in software architecuesign 69

All architectural patterns used by recommendatramework are investigated in [9]
as they were used from this selection. HowevercB¢§g] mentions only about Layers, Pipes
and filters, and Blackboard. Therefore, the conguariis based mainly on these.

The literature uses different taxonomy and catsgdion of quality attributes. Neither
Buschmann et al. [9] nor Bosch [7] use ISO/IEC 9126] quality model for identifying
quality attributes of patterns as it is in case¢hef recommendation framework. Therefore, in
order to establish a common vocabulary it is assuthat performance characteristic in [9]
and [7] is used in common with efficiency [20]. Alsflexibility and reusability are
recognized as maintainability. However, one shd@dp in mind that performance is also
observed as not only efficiency, but also relidpili

To complicate things even further, the empiricakeach was conducted to obtain the
data required for a detailed design, i.e. to ensheeability of addressing quality each
subcharacteristic in sufficient detail. The liten& considers whether a pattern influence
positively or negatively a top-characteristic. Mover, in some cases these are even
unmentioned. To enable the comparison betweenitdrature qualitative information, the
following translations have to be made:

» value of a characteristic (frofirable 7) is equal to the sum of its sub-characteristics,
* unmentioned characteristics or these identifiesbime cases as passive correspond to
zero value.

7.3 Usage example

The main purpose of this chapter is to verify weetthe framework is capable of
choosing best (optimized) solution for a given aetuality attributes. However, it is also
worth to demonstrate an example how to managetéps snvolved in this design support.
Therefore, besides the discussion on validity, serample calculations are presented at first
in order to illustrate the method. Then, these Iteguarchitectures are compared to what
literature suggests in similar designs. The follggvexamples take into account limitations
and assumptions discussed in the previous section.

» Step 1:

Besides the functional requirements, the requiresepecification consists of the quality
requirements such as:

The system shall be capable of incorporating newiirements.
The system shall be adaptable to other environments

The system shall be able to give a response notkeie X seconds.
The system shall have less than Y hours downtim& meonths.

PoONPE

These quality requirements identifgaintainability, portability, efficiency and reliability
respectively. Quality requirements put constraioms quality attributes. They are usually
specific values, a scope, or ranges of values datity attributes. Some example constraint
values that may be placed on these requirements:

* number of required modifications to incorporate rewstem feature,

» total allowable time needed to switch the systetm &ndifferent environment.
Section 3.3.6resents examples of metrics that are used tdreamsgjuality attributes.

The identification process is relevant for the wafte architecture design as it allows for
concrete and precise definition of quality attrémitlt is not the subject of this thesis to



The role of quality requirements in software architecuesign 70

investigate this activity. Also, for the purposetbis validity example, quality attributes are
predefined; chosen as a starting point for furiiscussion. Their exemplary specification
aims to present all required steps involved in thethod and hence — ensure a good method
understanding.

In order to illustrate the recommendation framewaskge, there are two examples that are
consideredSystem AandSystem B The following table identifies their quality abutes
from two requirements specifications.

System A System B
» Usability » Efficiency
e Maintainability * Maintainability
* Portability

» Step 2:

The second step conducts quality attributes pization.
1. Choose a scope of possible answers for the sreees.

System A1<PQ <6 System B 1< PQ <6

where:
PQ —is an importance weight oth quality attribute.

2. Assign weights to the quality attributes witttie specified scope.

System A System B
Usability PQ;=2 Efficiency PQ:=3
Maintainability PQ.= 2 Maintainability PQ.=3
Portability PQs;=2

These examples are further analysed in terms draneework validity. Therefore, the given

quality attributes are assigned with the same weigh order to compare the data further
with the qualitative information. Such procedurealso performed when the attributes in
guestion are equal important for a design

2. Normalise the priority values.

System A System B
Usability QAP;=10.33 Efficiency QAP;=0.50
Maintainability QAP,=0.33 Maintainability QAP,=0.50
Portability QAP3;=0.33




The role of quality requirements in software architecuesign 71

» Step 3:

It is assumed that the value of a characterista $sim of its sub-characteristics values. For
exampleEfficiency = (Time behaviour + Resource utitisa) /2

Therefore, the calculation for the final results:ar

The required calculations are only presented femtiost suitable architectural pattern which
best meets the given quality attributes.

System Afinal results:

LayerSusabiity, Maintainabiliy, Portabiliy] = 933L (1-58+ 147+ 1-24)
+ 0330](1.80+1.84+1.63+1.72)

+ 0330(1.64+1.79+1.72+1.65
~5.97

Table 10 lists architectural patterns in order of the &pilio fulfili the usability,
maintainability, and portability quality attributesin consequence, the framework
recommends th8ystem Athe Layered pattern to meet best the set of gateibutes.

Pos. Pattern Score
1. | Layers 5.97
2. | Broker 411
3. | Pipes & Filters 3.89
4.1 MVC 2.49
5.| PAC 1.31
6. | Microkernel 1.24
7. | Reflection -0.2]]
8. | Blackboard -1.43

Table 10 -RF results for usability, maintainability, and tadoility

Similarly with the results of th&ystem B where the framework identified the Pipes and
filters pattern as the most suitable architectpegtern for a combination of efficiency and
maintainability quality attributesTable 11 sorts architectural patterns towards their
fulfilment of quality attributes identified for ffilment during the design @ystem B

System Bfinal results:

Pipes & I:il'terS[Efﬁciency, Maintainability] = 0'5[(1'844-1'83
+050(1.75+1.73+1.55+1.71)

=4.70



The role of quality requirements in software architecuesign 72

Pos. Pattern Score

1. | Pipes & Filters 4.7(
2. | Microkernel 4.33
3. | Broker 2.69
4. | Reflection 1.80
5. | Layers 1.69
6. | PAC -1.89
7. | Blackboard -2.52
8.| MVC -2.74

Table 11- RF results for efficiency and maintainability

7.4 Qualitative study

This section presents the literature view, i.e. twh#rmation the literature sources
provide about the strengths and weaknesses oftectlvial patterns. Despite the limitations
identified in section 7.2there are several following that prevent from maightforward
comparison.

Although some relationship between patterns in ggrand certain quality attributes
is available, the impact is investigated in terrhbenefits or liabilities that a pattern impose.
Moreover, different quality attributes are inveatiggd for different patterns — a number of
quality attributes are left unmentioned. It is ased that the identified relationships are:

» (+) positive — a pattern supports a quality attiehu
* (-) negative — a pattern does not support a quaiitipute,
* (x) passive — a quality attribute is neither benedir liability of a pattern.

A passive influence is also given when the litematleaves the relationship unmentioned.
This means, there is nothing extraordinary in reteship between a patter and a certain
quality attribute. Although several relationshipe &sted, there is no order between them to
define:

* how quality attributes affect each other withinaatfular patter,

* how quality attributes of a pattern influence quyadittributes of other patterns.

This complicates the comparison even more. In aprsece, it is not a trivial task to
perform a relative comparison that is able to medihether the research outcomes are one
hundred percent valid. Nevertheless, it is possitde measure the recommendation
framework reliability to some extent. The literawiew is represented by Buschmann et al.
[9] and Bosch [7] since these sources reveal thengths and weaknesses of certain
architectural patteriis

To ensure the comparison is based on the variteratiire views so that the results
are compared to different and independent desonigtitwo well-known sources are chosen.
Buschmann et al. [9] and Jan Bosch [7] identifyersgths and weaknesses of certain
architectural patterns at the best of all inveséigditerature sources. Three most significant
and recognized architectural patterns discussedboitn [9] and [7] are used for this
discussion: layers, pipes and filters, and blackihoa

4 Jan Bosch in [7] uses the tearthitectural stylesynonymously tarchitectural pattern



The role of quality requirements in software architecuesign 73

The first step is to investigate [9] and [7] tontié/ points of view on the specified
architectural patterns. Tables x, x, and x illustia a convenient way benefits and liabilities
of layers, pipes and filters, and blackboard respely. These describe the quality attribute
relationships relevant for the comparison discussidhe following section.

* Layers
Impact QA Explanation

+ Changeability Individual layer implementations ncabe replaced by
semantically-equivalent imOplementations withoub tgreat
effort [9].

+ Maintainability | Changes often affect only onedayAdapting affected without
altering the remaining layers [9].
Layers have small dependencies on each other; ebazg
implemented affecting one or small number of congods [7].

+ Portability Changes of the hardware, the opegatiystem, the window
system, special data formats and so on often affielst one
layer [9].

+ Testability Test particular layers independenflypther components [9].

+ Usability Supports standardization. Defined anctepted levels of

abstraction enable the development of standardaskbk ang
interfaces. This allows for using products from fefiént
vendors in different layers [9].

- Efficiency Layering increase high efficiency phkies since data i
transferred through a number of intermediate laj@rs

Computation requires several switches of methodteson
resulting in decreased efficiency [7].

l*2)

X Reliability A high degree of reliability (errorocrection support) can be
built into layers, for example by using checksuBis [

Table 12- Quality attribute strengths and weaknesses offaye

As indicated inTable 12 reliability has passive impact. Buschmann edligcuss its concept,
but do not stand on a side. Buschmann et al. in to@siderations mention also about sub-
quality attributes (also called subcharacterist®sgh as testability and changeability that
both relate to maintainability, i.e. a top-levelatity attribute (a characteristic). These are
listed to emphasize the literature view, but areegalized to top-level quality attributes
because of the different categorisation of qualtributes. Hence, this makes the
straightforward comparison not reliable as these ot equal in meaning. For further
discussion, quality attributes may be referred @socharacteristics and subcharacteristics
divided according to its level in the ISO/IEC 9126] when necessary.

* Pipes and filters

Impact QA Explanation
+ Changeability Filters allow for their easy exchanwithin a processing
pipeline [9].
+ Efficiency Allows for parallel data processingammultiprocessor system
or a network [9].




The role of quality requirements in software architecuesign

74

Excellent units of concurrency allowing for parajeocessing

[7].

+ Maintainability | Allows creating new processingpelines by rearranging
adding and removing filters [9].

- Reliability Error handling hard to address sipggelines components d
not share any global state [9].

X Fault tolerance | If a filter detects errors in itgput data, the input may k

ignored until some clearly marked separation occiitsis
approach is useful when incorrect input data issids and
inaccurate results can be tolerated [9]

Table 13- Quality attribute strengths and weaknesses ofspapel filters

],

e

There are several cases when the literature wieehténature presents both sides of a given
quality attribute. Either there are features thaiusd be considered as benefits or liabilities
depending on the particular architecture context davelopmentTable 15 lists quality
attributes of the investigating architectural pai$eto presents their opposite impact sides.
Buschmann et al. [9] list efficiency as a benefipmes and filters identifying advantages.
On the other hand, there are four main concernsfitziency gained by parallel processing
as an illusion. These liabilities are concernedhwpbssible effects and costs involved.
Nevertheless, efficiency of pipes and filters upedperly is a benefit. In some cases, the
literature depicts advantages and disadvantagesnoarchitectural pattern for a certain
quality attribute and do not stand on a side.

+ Blackboard

Impact QA Explanation
- Resource Needless amount of computation is spent on behaviot
utilization related to the application domain, e.g. roaminghiaekboard
or multiple components trying to process a datmeld [7].
- Time behaviour No explicitly defined control flpwo the computation is not
performed in the optimal order [9].
+ Maintainability Processing components are inddpehof each other. Hence,
they can be added or removed, without changing rothe
processing components [7].
Blackboard supports maintainability because thaviddal
knowledge sources, the control algorithm and theraedatal
structure are strictly separated [9].
+ Fault tolerance Supports tolerance for noisy datd uncertain conclusions

performed by the system [9].

Testability

Computations do not follow a deterisiiic algorithm [9].

Efficiency

Suffer from computational overheads liejecting wrong
hypothesis [9].

Does not support the use of a control strategyekploits the|
potential parallelism of knowledge sources [9].

Needless amount of computation not related to &copdar

application domain [7]

Table 14- Quality attribute strengths and weaknesses okblzard



The role of quality requirements in software architecuesign

75

The quality attribute impact that the literaturevay presents is only concerned about the
development quality requirements, i.e. there the¢ abservable during the system
development. Buschmann et al. [9] and Bosch [7¢stigate the potential of patterns from a
developer point of view. Quality requirements conee with the user needs and
expectations that can be measured on a systenegugan are neglected in their discussion.
For example, maintainability is mentioned for evpaftern, but usability is investigated only
by Buschmann et al. in relationship with layers.

QA [Source], As benefit As liability
Pattern
Reliability [7], A layer may contain functionalityA failure in one layer may resu
Layers for dealing with faults that occurin the failure of whole system.

in other layers.

Efficiency [9],
Pipes and filters

Each filter in a pipeline consumg
and produces data in parallel.

>€ost and defects comparing to:

- transferring data between filte
comparing to computation by

single filter

- defects in implementation

- context switching betwee
threats

- synchronization of filters vig

pipes

Efficiency [7],
Pipes and filters

Excellent units of concurreng
that allow for parallel processing

of computation for each unit ¢
data.

yEvery filter performs a small unj

rs
a

>

Maintainability [7] , | Organization of pipes and filtersChanges affect several filters at a

Pipes and filters allows for their reorganizationitime, so the whole thelr
even during run-time. Changearrangement needs to be modified.
allow for adding, changing,The majority of requirements
removing existing elements. changes affect more than one

filter.

Maintainability [7] , | Independent processindNaive design may lead to systems

Blackboard components allow for addingthat are hard to maintain.
changing, removing the others.

Reliability [7], The independence of processingo central or explicit specification

Blackboard components and the fact thef the behaviour which makes
control component iterativelyhard for a system to identify that
activates the various componentssome responsibilities are npt

fulfilled.

Table 15- Quality attributes from different viewpoints

The quality attribute impact on the following atefuitural patterns is described entirely from

Buschmann et al. [9]:

* Broker
Impact QA Explanation
+ Portability Hides operating system details andwoek system details
from clients and servers by using indirection layas APIs




The role of quality requirements in software architecuesign 76

proxies and bridges.

+ Maintainability | Allows for dynamic change, additi, deletion, and relocatign
of objects.
Distributed services are encapsulated within object

- Fault tolerance | Server or broker may fail duggmggram execution and all of
the applications that depend on the server or lraleeunable
to continue successfully.

- Testability Many components and many ways of rtregllaboration
failure.

+ Testability A client application developed fromsted services is more
robust and easier itself to test.

- Efficiency Low efficiency because of the indirect layers that enabl
the system to be portable, flexile and changeable. F

Table 16- Quality attribute strengths and weaknesses ofdsrok
* Model-View-Controller
Impact QA Explanation

+ Usability The model is separated from the ustsrface components.
Multiple views can therefore be implemented andiusih a
single model. At run-time, multiple views may becapat the
same time, and views can be opened and closed diyaifym

- Usability Increased system complexity withoutngag much flexibility.

+ Maintainability | Changes to the user interface @asy, and even possible|at
run-time.
Change-propagation mechanism.

+ Portability Pluggable views and controllers; altoto exchange the view
and controller objects of a model.
User interface objects can be substitutes at mp-ti

- Efficiency Inefficiency of data access in viewews need multiple calls
to obtain all its display data.

Table 17- Quality attribute strengths and weaknesses of MVC
* Presentation-Abstraction-Control
Impact QA Explanation

+ Usability The model is separated from the us&rface components.
Multiple views can therefore be implemented anddusih a
single model. At run-time, multiple views may beeapat the
same time, and views can be opened and closed dtyaim

- Usability Increased system complexity becauséhefimplementation
of every semantic concept as its own PAC agent.

+ Maintainability | Different semantic concepts arepnesented by separate

agents independent of other agents.
Data model and user interface for each semanticeminor
task within the application developed interdepetigienf

other semantic concepts or tasks.




The role of quality requirements in software architecuesign 77

Change within the presentation or abstraction corapts of a
PAC agent do not affect other agents in the system.

+ Efficiency PAC agents can be easily to differémeads, processes, or
machines.
- Efficiency The overhead in the communication lesw PAC agents

when a top-level agent retrieves data from a boterel
agent (all of them are involved).

Table 18- Quality attribute strengths and weaknesses of PAC

* Microkernel

Impact QA Explanation

+ Portability Migrating the microkernel to a newrtiaare environment
only requires modifications to the hardware-depengarts.

+ Maintainability | Copes with continuous hardwarel aoftware evolution.
Implementing an additional view requires only addanew,
external server. Extending the system with add#ion
capabilities only requires the addition or extensid internal
servers.

+ Reliability Allows to run the same server on diffnt machines
(replication). Failures are easy to hide from a @s®l do not
affect the application (in such distributed systgems

—/+ Efficiency If the functional core of the apm@ion platform is separated
into a component with minimal memory size, and sew,
that consume as little power as possible, Micro&keavoids
performance problems.

Table 19- Quality attribute strengths and weaknesses of dkimmel
* Reflection
Impact QA Explanation

- Efficiency Reflective software are usually slowdrat non-reflective
systems caused by the complex relationship betweebase
level and the meta level. Inefficiency with extreogessing
with information retrieval, changing metaobjectsnsistency
checking, and the communication between the levels.

+ Maintainability | The metaobject protocol provides safe and uniform

mechanism for changing software.

Metaobjects encapsulate every aspect of systenvioeina
Supports changes of any kind of scale — even thédimenta
aspects can be changed.

Maintainability

Modifications at the meta levelayn cause damage to the
software or its environment (dangerous changes).

Usability

=h

Increased number of components — tleatgr the number ¢
aspects that are encapsulated at the meta lewelmire
metaobjects there are (system complexity).

Table 20- Quality attribute strengths and weaknesses oeRidin



The role of quality requirements in software architecuesign 78

7.5 Comparative discussion

This section compares the qualitative study results the quantitative
recommendation framework data. In order to stadtfanilitate the discussioable 21lists
the summarised literature survey outcomes nexthéo required framework values. The
brackets indicate which side of the presented tegsibilities is the final (resulting) one. It
should be noted that the limitations describedsection 7.2involve a certain amount of
translations and interpretations. This procedutewal for comparing the qualitative and
guantitative information together in a conveniemtywNevertheless, it reduces the number of
quality attributes that can be compared. It shalsd be noted that values for characteristics
are the average values of their subcharacterissiésllows:

For example concerning reliability:
Reliability = (Maturity + Fault tolerance + Recovability)/3
Therefore, reliability for layers:

Reliability ayers) = [(-0.47)+ (-0.54) + (-0.62)]/3~ -0,54

This procedure allows for the comparison. Howeitatpes not take into account the quality
attribute relationships described section 3.2.4 Quality attributes may influence, i.e.
strengthen or hinder each other. It is assumeth®purpose of this comparison that quality
attributes in a group (subcharacteristics) strezigach other more or less in the same way.
Nevertheless, this assumption may not be correevény case.

It is not a trivial task to compare quantitativelues to qualitative information.
Nevertheless, some conclusions can be pointedTalitle 21 proves to some extent the
recommendation framework validity. Surprisingly ority of the empirical values reflect the
literature view, e.g. when the value is above z#he,literature mentioned that a pattern is
fairly good at a quality attribute (positive impacthe values that are coloured in orange
present strong-value disagreements.

Moreover, the examples presented in the previmdion are based on quality
attributes that the literature presented positnfeience. Layers are proved by the literature
to be good at maintainability [7][9], portabilit@] and usability [9]. Therefore these quality
attributes were used in the example. In the examgdelts, the framework puts layers on the
first place (sedable 10 according to a set of these quality attributethwequal weights of
importance. The third place belongs to pipes alterdi which are proven in the literature to
have positive influence on maintainability [7][#owever, the literature says nothing about
portability and usability of pipes and filters.

The second example selected an architecturalrpati@sed on maintainability and
efficiency attributes. The results ifable 12 indicated that the best opportunity for these
quality attributes with equal importance valuestli® pipes and filters, followed by
microkernel and broker not investigated in therditere survey. However, the first result
reflects he literature view on positive aspectmafntainability [7][9] and efficiency [7][9].



The role of quality requirements in software architecuesign

AP QA Bosch| Buschmann RF
Layers Reliability —/+ X -0.54
Maintainability + + 1.75
Changeability X + 1.84
(maintainability)
Testability X + 1.72
(maintainability)
Efficiency - - -1.71
Portability X + 1.70
Pipes Reliability - - -0.67
& filters Maintainability —/(+) + 1.69
Efficiency —/(+) —/(+) 1.84
Blackboard Reliability —/+ + 0.97
Maintainability —/(+) + 0.39
Testability X - 0.67
(maintainability)
Efficiency - - -0.03
Resource utilization X — -0.12
(efficiency)
Time behaviour X - 0.06
(efficiency)
Broker Portability + 1,55
Maintainability + 1,33
Fault tolerance — -1,45
(reliability)
Testability —I/+ 1,25
(maintainability)
Efficiency — -0,41
MVC Usability —/+ 1,75
Maintainability + 1,24
Portability + -0,66
Efficiency — -1,42
PAC Usability —/+ 1,22
Maintainability + 1,09
Efficiency —/+ 0,13
Microkernel Portability + 1,57
Maintainability + 0,45
Reliability + 1,32
Efficiency —/(+) 1,20
Reflection Efficiency - -0,80]
Maintainability —/(+) -0,21
Usability — -1,67

Table 21- Summarised comparison values

Another way to verify the validity of the recommextidn framework results is to compare
the framework data against data from a relatecarebeconducted by Svahnberg and Wohlin
[31]. Both of data is quantitative in nature so tHd#ferences can be measured in
mathematical values. The original results of tleisearch is attached Appendix 1. In order



The role of quality requirements in software architectiesign 80

to make these comparisons, several preparatiordedde be done. First of all, Svahnberg
and Wohlin [31] used five of total eight patterrstegorised by Buschmann et al. [9] as
architectural. These are: blackboard, layers, rkemrel, model-view-controller, and pipes &
filters. Also, recommendation framework takes iatmount not only the top-level quality
attributes (characteristics) from the ISO-IEC 91fifality model [20], but also attributes
from the lower level (subcharacteristics). The reocgendation framework does not take into
account the functionality characteristics becausth® reasons described @hapter Five.
Naturally, the comparison will be limited to thesetors. Moreover, the research in [31] is
based on a framework that consists of two tables:
» Framework for Architecture Structures (FAS) whichtes the ability of each
architectural pattern to support for different dyahttributes,
* Framework for Quality Attributes (FQA) that rank$ieh architectural pattern is best
situated at each of the specified quality attribute
Both of these framework are compared and for toapgse the data have to be once again
normalised, but this time — without the functiobaliquality attribute. Then, the
recommendation framework data is also normalisetl gather inTable 22 and Table 23
that corresponds FAS and FQA frameworks respectivelyrsRa quality attributes with
similar values (similar results in both researcte@e)marked in orange colour.

Microkernel Blackboard Layers MVC Pipes & Filters
Svahnbergl RF Svahnberg| RF Svahnbergl RF Svahnberg| RF Svahnbergl RF

Efficiency 0,183 0,244 0,214 0,201 0,074 0,023 0,063 0,049 0,257 0,273

Usability 0,120 0,043 0,187 0,173 0,334 0,272 0,118 0,317 0,096 0,126

Reliability 0,138 0,254 0,108 0,304 0,122 0,115 0,119 0,247 0,169 0,094

Maintainability 0,208 0,187 0,403 0,244 0,289 0,297 0,339 0,274 0,319 0,262

Portability 0,351 0,272 0,088 0,077 0,181 0,293 0,362 0,113 0,159 0,244

Table 22— Quantitative research results comparison on FAS

Pipes &

Microkernel | Blackboard | Layers MVC Filters

Efficiency Svahnberg 0,264 0,175 0,087 0,113 0,360
RF 0,324 0,199 0,029 0,059 0,388

Usability Svahnberg 0,914 0,113 0,250 0,408 0,137
RF 0,051 0,151 0,306 0,334 0,158

Reliability Svahnberg 0,126 0,142 0,318 0,190 0,224
RF 0,277 0,248 0,121 0,244 0,111

Maintainability Svahnberg 0,191 0,092 0,285 0,239 0,193
RF 0,158 0,154 0,242 0,209 0,238

Portability Svahnberg 0,112 0,069 0,426 0,139 0,225
RF 0,279 0,059 0,289 0,105 0,268

Table 23— Quantitative research results comparison on FQA

These basic examples prove to some extent thatiire point of view, and hence —
the recommendation framework validity. However, tegpondents might have known these
sources and what they say about architectural rpati@ terms of their relationships with
quality attributes. Nevertheless, architecturaltggas used in the questionnaire are well-
known patterns and their benefits and liabilities @mmonly recognized in practise which
reflects to some extent the recommendation framle{R¥F) validity.



The role of quality requirements in software architecuesign 81

7.6 Summary conclusions

Section 4.3.2describes the two approaches of evaluation, iwalitgtive and
guantitative. The qualitative information is gateifrom the literature, and the quantitative
information is represented by the recommendatiaméwork data. The disadvantage of the
gualitative approach is that comparing the givechigectural patterns for more that one
quality attribute, the outcome is still ‘boolea@n the opposite, despite the quantitative data
of the recommendation framework, there are still means to identify the potential
limitations for an architecture. Nevertheless,ribyides better a reasoning background than
the qualitative information.

A number of translations and assumptions had tmée@e. These decrease the ability
to make appropriate comparisons of the literatueg/\and the recommendation framework
values.Table 21 summarises the comparison of qualitative and dgaéine information. The
values prove to some extent the recommendatiomsefnerk potential for choosing an
architectural pattern that fulfils the desired dfyaattributes.



The role of quality requirements in software architecuesign 82

Chapter Eight — Summary and concluding remarks

8.1 Research summary

The total work presented in this paper is concemitti a number of research
activities. In order to understand the role of gualequirements in software architecture
design a number of related concepts were presentediirst of the objectives was to define
the software architecture in terms of its relatfopsvith quality requirement£hapter Two
discusses software architecture of a software syste a set of components of the system,
their responsibilities and interactions. Their casipion allows not for addressing functional
requirements, but also is a method for an earlgiént of quality requirements. Views are
also described as they are used in software acthite to exhibit different quality
requirements important during software architectigsign and evaluatiotChapter Four).
Therefore, a good architecture is important in orde achieve the desired quality
requirements. Attention to quality requirementsalso crucial for software quality. By
leaving them unfulfilled, the system lacks in reqdiquality level.

The second objective was to identify and classifyaliy requirements which
influence the selection of software architectu@sapter Three is a detailed description on
quality requirements, where they are divided siryilby Bosch [7] and Bass et al. [2] into
two categories: operational (observable via exeayitand development (not observable via
execution). The fulfilment of quality requiremergespecially development-oriented) cannot
be measured before the system is actually implezdeet, they are hard to deal with since
they often tend to interact with each other, haynogitive or negative impacséction 3.2.4.
However, during the design phase, much of the tasipects of a system can be addressed.
During software architecture design such requirdmaeed to be prioritizedé¢ction 3.2.%
and balanced in design tradeoffe¢tion 3.2.7 when architects have to decide upon the
selection of a particular software architecturaigon.

Software architecture design activity (described Ghapter Four) takes the
requirement specification that contains both fuorai and quality requirements as an input,
and results in an artefact — a software architectlr other words, it is about converting
requirements into software architecture that felffiese requirements. Software architecture
design determines whether the software architedtasefulfilled its requirements, especially
quality requirements. There is still lack of knodde on what was proved to be the most
important — little practical guidance on how to mge the design activity in terms of quality
requirements. Usually architectural design meaksdasteps to provide the system with
expected functionality. However, a number of dif@rquality attributes are also of interest
in software architecture. These attributes arero€ial importance because they constrain
quality requirements, which in turn constrain thesign and development of software
architecture. These considerationsGhapter Three discuss the fourth objective of this
paper, i.e. software architecture design as a mdettffoachieving quality requirements.
Furthermore, this objective is continued in thecdssion on patters that provide an approach
for developing software with predefined quality uegments, and hence — high-quality
software architectures. They document existinggieg&inowledge and help to choose the
most suitable solution to recurring design probleRetterns exist in various ranges of scale



The role of quality requirements in software architecuesign 83

and abstractionséction 4.2.). Different patterns imply different design conseqces, that
includes the fulfilment of different quality reqaments. This means that the different
compositions of components and their specified aesibilities and interactions fulfil a
number of quality attributes. However, the selectad architectural pattern(s) is only the
first step during the software architectural design

Chapters Two — Fourare responsible for presenting the state-of-thewzatysis. The
findings are described in terms of the objectivescerned with the main aims of this thesis.
Section 8.2 summarizes the literature survey and indicatesveagit issues that should be
considered as recommendations. These concludingrksmemphasize the meaning and
importance of ensuring quality requirements in gectural design.

8.2 Proposed solutions

Systems are built to satisfy their requirementsftv@oe architecture design
determines ensures that the fulfilment of systequirements by the software architecture.
There is still lack of knowledge and what mattérs most — little practical guidance on how
to manage the design activity towards the achiemeroé quality requirements. Usually
design means taking steps to provide the systemitsiexpected functionality. However, as
it was proved, to ensure the required level ofvgafe quality a system must fulfil also
quality requirements. Therefore, this paper hagpg@sed arequirement-oriented design
methodin section 4.4 It should be considered as an outcome of theatitee review since
these results revealed the gap between qualityirssgents and software architecture.
Having reviewed important aspects of several softveachitecture design methods, little but
not sufficient attention is paid to govern the desitowards the fulfilment of quality
requirements. The proposed method is inspired dynanrtant breakthrough in this area, i.e.
Bosch design method [7]. In opposite to Bosch, daisign process starts with a design of a
preliminary version of the software architecturesdzhon quality requirements specified in
requirements specification. The objective of thigdel is to design a software architecture
that targets both requirements types of a systengeneral, these quality requirements
strategies involve of ensuring the existence opecisied order (decomposition) of one or
more components (mechanisms) that fulfil desirédbates of a system. It is also worth to
mention that all of these abstract from the systenctional requirements. Therefore, the
proposed method find its usage in software architeaesign activities.

The method is aimed towards:
» design software architecture that targets bothstyjf@equirements
» fill the gap of quality requirements in softwarelgitecture design,
» ensure software high quality compared to the ressuused in architectural design.

The benefits and general features of this approacbhmparison to Bosch include:
» less modification-prone, i.e. avoids modificatiareised by the lack of QRs during
the functionality-oriented design,
» early fulfilment of the top abstraction level (gapQRs,
» addresses QRs before the core functionality issglac
» saves efforts due to the smaller number of QRauatiahs
» considers FRs variability caused by QRs ensuringcquures,
» allows for sacrificing FRs in order to meet QRs,
» similar development progress — FRs & QRs are fatficomparatively.



The role of quality requirements in software architecuesign 84

Besides the conceptual design considerations,réissarch also presents a practical
solution to the identified problems. Architectupaltterns from [9] represent the highest-level
patterns. They are used to specify the fundamenthitectural structure. Every development
activity that follows is governed by this structi¢é. The selection of an architectural pattern
is greatly influenced by the quality requirementsacsystem. That is why they have been
chosen for the proposed Recommendation Framew@hlafter Six) that is a systematic
approach of fulfilling quality requirements durirsgftware architecture design stage. This
helps to systematically guide selection among dealtgrnatives. It selects the most suitable
architectural pattern from a set of given qualityrilbutes. The idea of such solution
originates from the observation of certain architesd structures to predict the quality
attributes they affect [30]. Although the literai7] and [9] provides benefits and liabilities
of a certain pattern, the qualitative nature of thirmation does not allow for equal
measurements and comparisons. Hence, an empiesahich was conducted to obtain the
required data for the proposed method. Based oguhstionnaire quantitative outcomes, an
automated design support is creat€thapter Sevendiscusses the framework’s validity.
Despite the solution reliability, it is a step famd in designing towards quality requirements.

The recommendation framework uses patterns cassgbras architectural besides
design patterns and idioms also specified in [9leSe patterns are divided with respect to
their range of scale and abstraction. Differentligueequirements are addressed at different
abstraction levels. The first proposed model isiaity requirement-oriented design method
where quality requirements are taken into accourfirst during a software architecture
design. The recommendation framework is considesed practical illustration of such an
approach. However, it concentrates on architectpadtierns that express the fundamental
structure and hence, the quality requirements @ ftighest-abstraction level. These
considerations and the lack of a support for achge\guality requirements at all design
levels resulted in a third, last proposal methothdd thesis — guality requirement-oriented
and pattern-based design methaescribed irsection 6.7 This method is proposed to deal
with the quality requirements at all abstractiovels specified by patters in [9].

8.3 Conclusions

Software engineers used to provide systems thatecwrate on the required system
behaviour, i.e. functional requirements. Todaydb#ware market is full of applications with
similar functionality, and the factor that diffeesn application from another is its quality
level. As it was proved in this thesis, the levieqoality depends greatly on the achievement
of quality requirements. This means that the foléht of quality requirements set the
boundaries for the total software quality of a eyst Therefore, in order to select the best
solution from comparable (similar) applicationsgdmas to take into consideration how, and
to what degree these applications fulfil the dekmgaality requirements. This should results
in increased customer satisfaction.

As it was indicated ilChapter Three quality requirements may affect one part of an
application or a system as a whole. To underlirer ttmportance it should be stated that
functional requirements may need to be sacrifioedoider to meet the system quality
requirements, and in result — the product goalss iBrbecause the lack of a system service (a
functional requirement) may degree the system lisalwhile leaving a quality requirement
unfulfilled can make the system totally uselesy.[28

The designed system itself has an impact on quaditpirements. The larger the
system is developed, the more crucial quality negnents of such system are. This means
that the importance of quality requirements incesawith the size of a designed system.



The role of quality requirements in software architecuesign 85

Similarly with complexity — the more complex syst&snthe more attention is paid to quality
requirements and their fulfilment. Chapter Threespnted how quality requirements are
divided (development and operational). These caiegoalso influence the software
architecture design. First of all, operational-otezl quality requirements are in most cases
impossible to incorporate at the software architectievel as they can be observed and
measured during the system execution. What is melye important that the cost of
incorporating quality requirements into a systemat thas been developed absorbs a lot of
resources such as schedule or budget costs. Theréfis important to ensure the fulfilment
of quality requirements as soon as possible todaswach resource penalties.

The research presented in this thesis benefits lietger understanding of quality
requirement-related issues. It lays out qualityunemments in such a way that they can
govern architectural decisions and be used to ataline architecture. This thesis proposes a
guantitative approach for achieving software prodpality. This might be a step forward
towards the systematization of design methods amadlty requirement-oriented approach of
architectural designs. The research focused orysinaf software architectures against one
or more desired software qualities that ought tadigeved at the architectural level.

8.4 Concluding remarks

While the previous section summarised what has ke, this part indicates
relevant concepts described in this thesis. Theséha state-of-the-art findings that ought to
be considered as recommendations. They are presfivemally to increase attention and
avoid potential misunderstanding in the area ofiyueequirements in software architecture
design.

Software architecture desiglfapter Two and Four) is not concerned with the
design of algorithms and data structures. It is momy agreed that software architecture
design of a system is:

* a high-level system design beyond the algorithmd data structures of the
computation

» an overall organization of elements and their iretest (components and connectors)

* a coherent combination of views that describe tysesn features from different
perspectives

« a set of fundamental design decisions that eshabdis system topology and
vocabulary.

Conclusion 1.  Software architecture is a structure that illuminates the top-level dasi
decisions. It governs the system decomposition interacting parts as
results ofdesigndecisions towards the fulfilment of system reguieats.

Conclusion 2. The design process of achieving system requiremeatsarchitectural
means is callegoftware architecture designand results in an artefact
calledsoftware architecture.

Software architecture is often separated into leltviews that present the system features
from different perspectives. One view presentsotariquality requirements that may be
invisible via others. Views reduce the complexitgldelp to make decisions about trade-
offs. Views are represented by a number of notatsuth as Unified Modelling Language
(UML) considered as one of Architecture Descripti@amguages (ADLS).



The role of quality requirements in software architecuesign 86

The design process is not only governed by funatiorquirements, but also by quality
requirements [2][7][9][16]. Functional requirementapture the intended behaviour of a
system (services or tasks to perform), while theligurequirements impose constrains or
restrictions on the software product and the dgaraknt process [12].

Conclusion 3. FRs describewhat a system does, where@Rs put constrains omow
theseFRs are ought to be implemented.

Quality requirements affect either one part of apli@ation or the system as a whole. In
some cases, functional requirements have to befisadrin order to meet the quality

requirements, and in result — the product goallck of a functional requirement (a system
service) may degree the system usability, while saxering a quality requirement could
make the system totally useless [13].

Functional requirements are usually captured witiLt$ use-cases, analyzed by
sequence diagrams, statecharts, etc. Quality esgeints are often specified as a part of
functional requirements, e.g. “The system shallab&e to present a response message
later than 3 seconds”In other words, quality requirements determinerail constrains on
the functionality.

Conclusion 4.  Quality requirements = Functional requirements +rGtrains

A software system has many characteristics, e.gnteiaability, reliability usability. The
quality of each of these characteristics determihe total software quality. Each
characteristic can be specified as an attributth@fsystem if a metric is given to verify that
the architecture addresses the quality.

Conclusion 5. Quality attributes are measurable or observable properties of a system
that have some qualitative or quantitative value.

Quality requirements determine the quality attr@subf a system by placing constraints.
These are usually specific values, a scope, oresanfjvalues for quality attributes.

Conclusion 6.  Quality requirements = Quality attributes + Congtra

Quality attributes are categorised into developnagk operational [7]. Development quality
requirements are attributes relevant from a dewslgperspective, e.g. maintainability,
portability. Operational quality requirements amgiceable and measurable thre system in
operation, e.gefficiency, security, usability.

It is important to understand the potential relaginips between quality attributes,
especially conflictsqection 3.2.4. It allows for monitoring how different qualityttebutes
interact with each other. It is especially impottamexamine potential conflicts in order to
minimize the inappropriate design decisions.

Conclusion 7. Quality attributes oftemteracteach othepositivelyor negatively

One way to design a software system is to stah wipattern. Patterns describe a set
of components, their relationships and the requicedstraints, the rationale for their
cooperation, and the software qualities they pmviBuschmann et al. [9] categorized



The role of quality requirements in software architecuesign 87

patterns according to their level of abstractiorchtectural patterns are concerned with the
fundamental structure of a system. Design pattarasconcerned with smaller architectural
units such as subsystems or components. In opfositesign patterns, idioms are language
specific patterns that concern implementation msitté particular design issues.

Conclusion 8.  Patternsaaddresssome quality attributes afiriousabstraction levels.

Software architecture design should determine wdrethe design result, i.e. software

architecture, has fulfilled the (quality) requiram® Software architecture evaluation is

performed to measure quality attributes, so theasebe compared to the quality requirements
from the requirements specification. The main paepof architectural evaluations is to asses
the quality attributes of a system during the desigwithout having a concrete system

available. Different approaches for assessing tyugdguirements have been identified such
asscenariossimulation andmathematical modellingr].

Conclusion 9.  Architecture evaluatiormeasures how well the architecture addresses
quality requirements of the system.

One of the major issues in software systems dewsdop today is quality. The notion of
software architecture determines the level for idgalith software quality. This is because
the overall quality of a system depends on thelfiudint of system requirements.

Conclusion 10. Software qualityis governed by the level of quality requirements
fulfilment.

Little, but not sufficient research has been danddsign software architecture from quality
requirements. Although there has been some interadhvestigated by the literature
[3][4][9][44], but the task still remains difficult

8.5 Future work

The author may wish to consider possible furthgarding the software architecture
design in terms of quality-related issues. In pattr, there are several aims of future work
described as follows.

Unified Modelling Language (UML) is often used as Architectural Description
Language (ADL). Although it describes detailed dasilecision, it is also used to manifest
the high-level software architecture design. HoweWML does not specify the boundary
between the designs at different abstraction levdlkile UML emerged from object-
oriented designs, it commonly supports variousiledesigns. Confusion exists since a
software architect cannot distinguish between &chiral information (high-level design
decisions and artefacts), and other types of indbion.

The aim is to specify the difference between udiML for software architecture and the
more common use of designing applications with UNThis should results in a proposal of
an UML usage for high-level and detailed softwagsign.

Software architecture design is worth nothing with@quirements engineering — the
first activity in software development life cycl€he path to fulfilling quality requirements
begins with eliciting, verifying, documenting andrgrally — managing quality requirements.



The role of quality requirements in software architecuesign 88

As this paper indicated - insufficient time andoeffare spent on the quality requirement-
related activities associated with the gatheringligu requirements for the use of
architectural design. Many software requirementgcsjgations (also called software
requirements documents), are either full of badhtten (quality) requirements or do not
specify them at all. In order to meet them propéshythe software architecture, they need to
be precisely specified during requirements engingetJML use-case models are commonly
used to express functional requirements, whereaditgjuequirements are specified as
footnotes or supplementary text. Further work asos towards improvements in eliciting,
analyzing and verifying quality requirements. Thigght result in extending an ADL for
software architecture to deal with quality requiesits. A possible target is the Unified
Modelling Language (UML).

An important issue in this research is the conoépiterdependencies among quality
attributes gection 3.2.4. Quality attributes often influence each othéher strengthen (e.g.
securityandsafety or hinder (e.gefficiencyandmaintainability). In order to address a set of
desired quality attributes in software architectutesign, their relationship has to be
recognized. Future work aims also includes idemgfy specifying and testing quality
attributes interdependencies.

An empirical research was conducted to collect theta required for the
recommendation frameworkChapter Six). The literature such as [7][9] provides some
dependencies between quality attributes and saftveachitecture structures, especially
patterns. However, a number of quality attribut@aat is not recognized. Future study aims
also identifying these missing relationships.



The role of quality requirements in software architecuesign 89

References

[1] S. T. Albin, The Art of Software Architecture: Design Methodsl drechniquesJohn
Wiley and Sons, 2003.

[2] L. Bass, P. Clements, R. Kazma&npftware Architecture in PracticeAddison Wesley
Longman, 1998.

[3] L. Bass, M. Klein, F. BachmaniQuality Attribute Design PrimitivesTechnical Note
CMU/SEI-2000-TN-017, 2000.

[4] P. BengtssonArchitecture-Level Modifiability Analysi®octoral Dissertation Series No.
2002-2, Blekinge Institute of Technology, 2002.

[5] P. BengtssonSoftware Architecture - Design and Evaluatid®esearch Report 10/99,
Blekinge Institute of Technology, 1999.

[6] B. Boehm, J. Brown, H. Kaspar, M. Lipow, G. Mahd, M. Merritt,Characteristics of
Software QualityNorth Holland, 1978.

[7] J. BoschDesign and Use of Software Architectures. Adopéind Evolving a Product-
Line ApproachAddison-Wesley, 2000.

[8] M. Bray, M. Ross, G. Staple§oftware Quality Management IV: Improving Quality
Mechanical Engineering Publications, 1996.

[9] F. Buschmann, R. Meunier, H. Rohnert, P. SontewerM. Stal, Pattern-Oriented
Software Architecture. A System of Pattedodn Wiley and Sons, 1996.

[10] L. Chung, B. A. Nixon, E. Yu and J. MylopouJoson-Functional Requirements in
Software EngineerinKluwer Academic Publishing, 1999.

[11] L. M. Cysneiros, J.C.S.P Leit&jon-Functional Requirements: From Elicitation to
Conceptual ModellEEE Transactions on Software Engineering, Ma@420

[12] L. Dobrica, E. NiemelaA Survey on Software Architecture Analysis MethdBEE
Transactions on Software Engineering, Vol. 28, NR002.

[13] A. Eden, R. KazmarArchitecture, Design, ImplementatioRroceedings of the 25th
International Conference on. Software Engineeri@$E 25), 2003.

[14] E. Gamma, R. Helm, R. Johnson, J. Vlissidessign Patterns - Elements of Object-
Oriented SoftwareAddison-Wesley, 1994.



The role of quality requirements in software architecuesign 90

[15] D. Gross, E. YuFrom Non-Functional Requirements to Design throldtterns
Requirements Engineering, Vol. 6, No. 1, pp. 18R&ruary 2001.

[16] C. Hofmeister, R. Nord, D. Sof\pplied Software Architecturdddison-Wesley, 2000.

[17] Institute of Electrical and Electronics Engemg, IEEE Standard 1061-1998:
A Standard for a Software Quality Metrics MethodpidNew York, 1998.

[18] Institute of Electrical and Electronics Engeng, IEEE Standard 610.12-199&EE
Standard Glossary of Software Engineering Termiggldlew York, 1990.

[19] International Standards Organizatioeference Model for Open Distributed
ProcessingInternational Standard 10746-1, ITU RecommendaX®01, 1996.

[20] International Standards Organizati@uftware Engineering - Product Quality, Parts 1 —
4, ISO/IEC 9126, 2001.

[21] R. Kazman, M. Klein, P. Clement®TAM: Method for Architecture Evaluatipn
CMU/SEI-2000-TR-004, ADA382629, Software Enginegrinstitute, 2000.

[22] P. KruchtenThe “4+1” View Model of Software ArchitecturéEEE Software 12 no. 6,
pp. 42-50, 1995.

[23] P. Lalanda, S. Cherki, Object-oriented methadd software architecture, Proceedings
of the ECOOP'98 on Object-Oriented Software Ardtitees, Blekinge Institute of
Technology, 1998.

[24] L. Lundberg, M. Mattsson, C. WohlirGoftware quality attributes and trade-qffs
Blekinge Institute of Technology, 2005.

[25] J.A. McCall, Quality Factorgncyclopaedia of Software Engineerjriphn Wiley and
Sons, 1994,

[26] J. A. McCall, P. K. Richards, G. F. Waltefsactors in Software QualityTechnical
Report (RADC)-TR-77-369, NTIS, Volumes |, II, 11977

[27] I. Sommerville, G. KotonyaRequirements Engineering: Processes and Techniques
John Wiley and Sons, 1998.

[28] I. Sommerville Software Engineering, 6th editipAddison Wesley, 2000.

[29] M. Svahnberg, C. Wohlimfh Comparative Study of Quantitative and Qualitatiiews
of Software Architectures Proceedings of the 7th International ConfereaseEmpirical
Assessment in Software Engineering (EASE 2003).

[30] M. Svahnberg, C. Wohlin, L. Lundberg, M. Mab®, A Method for Understanding
Quality Attributes in Software Architecture Strues, Proceedings of the 14th International
Conference on Software Engineering Decision Supf8EKE 2002).



The role of quality requirements in software architecuesign 91

[31] M. Svahnberg, C. WohlinAn Investigation of a Method for Identifying a 3aite
Architecture Candidate with respect to Quality Attites Empirical Software Engineering,
10, 149-181, 2005.

[32] M. Svahnberg, C. Wohlin,Consensus Building when Comparing Software
Architectures Proceedings of the 4th International Conferent®duct Focused Software
Process Improvement (PROFES 2002).

[33] UML 2.0 Superstructure — Final Adopted Specifiaat®@MG document ptc/03-08-02,
2002.

[34] K. E. WiegersSoftware Requirementslicrosoft Corporation, 2000.



The role of quality requirements in software architecuesign

92

Appendix 1
Model- Piges anil
Microkernel| Blackboard | Layered View- i
Filters
Controller
Efficiency 0.161 0.145 0.0565 |0.0557 0.218
Functionalit  |0,119 0.321 0.237 0.115 0,151
Usability 0.106 0.127 0.255 0.104 0.0818
Reliability 0.122 0.0732 0.0930 |0.105 0.144
Maintainabilit |0.183 0.273 0,221 0.300 0.271
Portabilit 0.309 0.0597 0.138 0.320 0.135

Table 24- Framework for Architecture Structures (FAS) [31]

MogHl- Pipes and
Microkernel| Blackboard | Layered View- i
Filters
Controller
Efficiency 0.264 0.175 0.0868 0.113 0.360
Functionalit [0.205 0.252 0.199 0.206 0,139
Usability 0.0914 0.113 0.250 0.408 0.137
Reliahility 0.126 0.142 0.318 0.190 0.224
Maintainabilit |0.191 0.0921 0.285 0.239 0.193
Portabilit 0.112 0.0689 0.426 0.139 0.255

Table 25- Framework for Quality Attributes (FQA) [31]



The role of quality requirements in software architecuesign 93

Appendix 2 — Questionnaire

Questionnaire

This is ananonymousquestionnaire about the role Quality Requirements (also
referred asNon-Functional Requirementg in software architecture design. It will be very
important and helpful for my research if you cosidend a few minutes answering the
guestions below. Please complete the questionhairestly at the best you can.

A. Benefits of the research and your participation:

You will be given the results and conclusions.

The solution of this research may help in your fatdesigns.

Opportunity to help in an academic experiment.

Your participation will provide results that maypact software engineering education.

PwbPE

B. General information

1. Have you taken participation in software arattitee design?

| [ Yes | 1 No |

2. If yes, specify more or less how many times:

3. How do you grade your knowledge about qualityn@functional) requirements?

1 2 3 4 5 6 7 8 9 10

Any Bad Poor Below | Average| Above| Good Very | Superb| Excellent
average average good

4. Do you take into account quality requiremeniss{ttes the functionality of a system) in
your designs?

| [ Yes | 1 No |

5. How do you grade your knowledge about patterns?

1 2 3 4 5 6 7 8 9 10

Any Bad Poor Below | Average| Above| Good Very | Superb| Excellent
average average good




The role of quality requirements in software architecuesign 94

C. Architectural Patterns and Quality Attributes

This research is an attempt of creating a recomatemdframework. It shall provide
an automated support in choosing the most suitstftevare architecture description for the
given quality attributes. These attributes comenmfrguality (non-functional) requirements
that constrain a software syste¥four answerswill help to gather the required data, based
on which the transformation from quality requirernsemto a architectural pattern will be
created.

Reminders to:

1) Architectural Patterngittp://www.student.bth.se/~kkwnO5/architectural tgats.htm

2) Quality Attributes:
http://www.student.bth.se/~kkwn05/quality attribaitegm

available through the website.

Legend for the assessment:

Grade: Explanation:

+2 High positive impact of a quality attribute on an architectyrattern.

+1 Positiveimpact of a quality attribute on an architectyrattern.

0 | Passiveimpact (neither benefit nor liability).

-1 Negativeimpact of a quality attribute on an architectyrattern.

-2 High negativeimpact of a quality attribute on an architectyrattern.

Thank you for your cooperation!



The role of quality requirements in software arebttire design

95

1.4. Maintainability
1. LayeI’S Analysability | -2 |-1/0]| +1|+2
1.1.How do you grade your familiarity with thayered pattern? Changeability | -2 | -1 | 0| +1 | +2
1 2 3 4 5 Stability [-2|-1]0|+1|+2
None | Poor | Averagg Good  Excelleht Testability |-2|-1|0] +1 | +2
1.2. Reliability 1.5. Efficiency
Maturity |-2|-1]0] +1|+2 Time behaviour [-2 -1 [0 +1] +2
Fault tolerance| -2 | -1 ] 0| +1 | +2 Resource utilisation| -2 [-1 | 0] +1 [ +2
Recoverability | -2 -1]0 | +1] +2
1.3. Usability 1.6. Portability
Understandability [ -2 | -1 |0 | +1 | +2 Adaptability [-2]-1]0|+1 | +2
Learnability |-2|-1]0|+1| +2 Installability [-2|{-1]0|+1)+2
Operability [-2|-1]0|+1| +2 Co-existence | -2 | -1 | 0| +1| +2
Replaceability | -2 -1 ][0 | +1 | +2
. . 2.4. Maintainabilit
2. Plpes and Filters yAnaIysabiIity 2[-1[0]+1]+2
2.1.How do you grade your familiarity with thepes and filters Changeability | -2 | -1 |0 | +1| +2
pattern? Stability [-2|-1]0|+1]+2
1 2 3 4 5 Testability | -2|-1[0] +1|+2
None Poor | Averags Goodg Excellent
2.2. Reliability 2.5. Efficiency
Maturity | -2 |-1[0 | +1|+2 Time behaviour [ -2 | -1 | 0| +1 | +2
Fault tolerance | -2 -1 0| +1 | +2 Resource utilisation| -2 -1 ] 0] +1 | +2
Recoverability | -2]-1]0| +1] +2
2.3. Usability 2.6. Portability
Understandability | -2 | -1 |0 | +1 | +2 Adaptability | -2|-1]0|+1|+2
Learnability |-2|-1]0] +1 | +2 Installability |-2[-1[0]+1]|+2
Operability |-2|-1]0]+1]+2 Co-existence | 2 [-1 | 0| +1[ +2
Replaceability | -2[-1]0| +1 | +2




The role of quality requirements in software arebttire design

96

3.4. Maintainability

3. Blackboard Analysabilty [ 2] 4 [0] +1] %2
3.1.How do you grade your familiarity with theackboard pattern? Changeability | -2 | -1 | 0| +1 | +2
1 2 3 4 5 Stability | -2|-1]0|+1|+2
None | Poor | Averagg Good  Excelleht Testability |-2|-1|0] +1 | +2

3.2. Reliability 3.5. Efficiency
Maturity |-2|-1]0] +1|+2 Time behaviour [-2 -1 [0 +1] +2
Fault tolerance| -2 | -1 ] 0| +1 | +2 Resource utilisation| -2 [-1 | 0] +1 [ +2

Recoverability | -2 -1]0 | +1] +2

3.3. Usability 3.6. Portability
Understandability [ -2 | -1 |0 | +1 | +2 Adaptability [-2]-1]0|+1 | +2
Learnability |-2|-1]0|+1| +2 Installability [-2|{-1]0|+1)+2
Operability |-2|-1[0| +1 | +2 Co-existence | -2 | -1 |0 | +1 | +2
Replaceability | -2 -1 ][0 | +1 | +2

4.4. Maintainability

4- BrOker Analysability | -2 |-1[0 | +1|+2
4.1.How do you grade your familiarity with theroker pattern? Changeability | -2 | -1 |0 | +1| +2
1 2 3 4 5 Stability |-2|-1[0|+1|+2
None Poor | Averagg Good  Excellept Testab”ity 210-110 41| +2

4.2. Reliability 4.5. Efficiency
Maturity | -2 |-1[0 | +1|+2 Time behaviour [ -2 | -1 | 0| +1 | +2
Fault tolerance | -2 | -1 |0 | +1 | +2 Resource utilisation| -2 -1 ] 0] +1 | +2

Recoverability | -2]-1]0| +1] +2

4.3. Usability 4.6. Portability
Understandability | -2 | -1 [0 | +1 | +2 Adaptability [-2 -1 0| +1]|+2
Learnability [-2|-1|0|+1|+2 Installability [-2|{-1]0|+1)+2
Operability [-2]-1 |0 | +1[+2 Co-existence | -2 | -1 |0 | +1 | +2
Replaceability | -2[-1]0| +1 | +2




The role of quality requirements in software arebttire design

97

: 5.4. Maintainabilit
5. Model-View-Controller Y pnalysabiity [Z]ZTO[7L]72
5.1.How do you grade your familiarity with tidVC pattern? Changeability | -2 | -1 | 0| +1 | +2
1 2 3 4 5 Stability |-2|-1]0]+1 | +2
None | Poor | Averagg Good  Excelleht Testability |-2|-1|0] +1 | +2
5.2. Reliability 5.5. Efficiency
Maturity |-2|-1]0] +1|+2 Time behaviour [-2 -1 [0 +1] +2
Fault tolerance| -2 | -1 ] 0| +1 | +2 Resource utilisation| -2 [-1 | 0] +1 [ +2
Recoverability | -2 -1]0 | +1] +2
5.3. Usability 5.6. Portability
Understandability [ -2 | -1 |0 | +1 | +2 Adaptability [-2]-1]0|+1 | +2
Learnability |-2|-1]0|+1| +2 Installability [-2|{-1]0|+1)+2
Operability [-2|-1]0|+1| +2 Co-existence | -2 | -1 | 0| +1| +2
Replaceability | -2 -1 ][0 | +1 | +2
6. Presentation-Abstraction-Contro| ©# Mantanabiy i
) Analysability | -2 |-1[0 | +1|+2
6.1.How do you grade your familiarity with tieAC pattern? Changeability [ -2[-1[0] +1]+2
1|2 3 4 5 Stability | -2|-1]0]+1]+2
None Poor | Averagg Good  Excellent Testability 21110 +1 | +2
6.2. Reliability 6.5. Efficiency
Maturity | -2 |-1[0 | +1|+2 Time behaviour [ -2 | -1 | 0| +1 | +2
Fault tolerance | -2 -1 0| +1 | +2 Resource utilisation| -2 -1 ] 0] +1 | +2
Recoverability | -2]-1]0| +1] +2
6.3. Usability 6.6. Portability
Understandability | -2 | -1 |0 | +1 | +2 Adaptability | -2|-1]0|+1|+2
Learnability |-2|-1]0] +1 | +2 Installability |-2[-1[0]+1]|+2
Operability |-2|-1]0]+1]+2 Co-existence | 2 [-1 | 0| +1] +2
Replaceability | -2[-1]0| +1 | +2




The role of quality requirements in software arebttire design

98

: 7.4. Maintainabilit
/. Microkernel ” analysabilty [2 L [0] +1[+2
7.1.How do you grade your familiarity with theicrokernel pattern? Changeability | -2 | -1 | 0| +1 | +2
1 2 3 4 5 Stability | -2|-1]0|+1|+2
None | Poor | Averagg Good  Excelleht Testability |-2|-1|0] +1 | +2
7.2. Reliability 7.5. Efficiency
Maturity |-2|-1]0] +1|+2 Time behaviour [-2 -1 [0 +1] +2
Fault tolerance| -2 | -1 ] 0| +1 | +2 Resource utilisation| -2 [-1 | 0] +1 [ +2
Recoverability | -2 -1]0 | +1] +2
7.3. Usability 7.6. Portability
Understandability [ -2 | -1 |0 | +1 | +2 Adaptability [-2]-1]0|+1 | +2
Learnability |-2|-1]0|+1| +2 Installability [-2|{-1]0|+1)+2
Operability |-2|-1[0| +1 | +2 Co-existence | -2 | -1 |0 | +1 | +2
Replaceability | -2 -1 ][0 | +1 | +2
. 8.4. Maintainabilit
8- ReﬂeCt|On yAnalysability 2(-1]0]+1]+2
8.1.How do you grade your familiarity with theflection pattern? Changeability [ -2 | -1 | 0| +1| +2
1 2 3 4 5 Stability [-2|-1]0|+1|+2
None Poor | Averagg Good  Excellept Testabi"ty 210-110 41| +2
8.2. Reliability 8.5. Efficiency
Maturity | -2 |-1[0 | +1|+2 Time behaviour [ -2 | -1 | 0| +1 | +2
Fault tolerance | -2 | -1 |0 | +1 | +2 Resource utilisation| -2 | -1 | 0| +1 | +2
Recoverability | -2|-1]0 | +1] +2
8.3. Usability 8.6. Portability
Understandability | -2 | -1 | 0| +1 | +2 Adaptability [-2|-1|0|+1|+2
Learnability [-2|-1|0|+1|+2 Installability [-2|{-1]0|+1)+2
Operability [-2][-1]0 | +1 | +2 Co-existence | -2 | -1 |0 | +1 | +2
Replaceability | -2[-1]0 | +1 | +2




